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ABSTRACT

This report covers research on a probabilistic fault displacement hazard analysis (PFDHA)
model for reverse faulting events. The goal was to provide the tools needed to estimate surface
fault rupture displacements for reverse faults within a hazard forecasting framework. This model
supersedes previous models and includes: revised relationships between magnitude and
maximum/average displacement, revised distributions of principal displacement along fault strike,
improved distributions of principal displacement exceedance. the addition of distributed
displacement models, and improved coding of the PFDHA methodology for hazard calculation.
This work has been in conjunction with the UCLA-led Fault Displacement Hazard Initiative
(FDHI), and specifically the FDHI database (Sarmiento et al., 2021) and the FDHI working group
monthly discussions. Additional insights have been gained through participation in the PFDHA
benchmarking project led by the International Atomic Energy Agency (IAEA). Contained in this
report are the statistical/analytical analyses and resulting mathematical functions that comprise the
PFDHA calculation. The code developed for performing these calculations are included in the
appendix. The results are a comprehensive set of options that allow users to forecast reverse fault
displacements for both on-fault and off-fault locations.

REVISIONS

This report has been revised since its initial publication date. The revisions address changes and
corrections in the distributed displacement model and its coding. The changes and corrections
came about through the validation process initiated by the IAEA for vetting PFDHA codes. The
changes include:

e Completely revised section on probability of nonzero distributed displacement, P(d>0),
shown in pgs. 50-62.

e Error correction in the coefficients reported for the frequency distributions of distributed
displacements in shown in pgs. 63-75.

e Revised d/MD and d/AD plots and the inclusion of tabulated percentiles shown in pgs.
76-85.

e Revised hazard curves for distributed displacement to reflect the changes in the model
shown in pgs. 88.

e Revised coding to reflect these changes and corrections, Appendix C.
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1 Introduction

This report covers research endeavors on updating a probabilistic fault displacement hazard
analysis (PFDHA) model for reverse faulting events. The original model by Moss and Ross
(2011) is superseded by the work presented herein. Updates on all components of the model are
provided with justification for the revisions. Included in this updated PFDHA model are:

Revised relationships between magnitude and maximum/average displacement.
Revised distributions of principal displacement along fault strike.

Improved distributions of principal displacement exceedance.

The addition of distributed displacement modeling.

Improved coding of the PFDHA methodology for hazard calculation.

O O O O O

The research team consists of individuals from diverse backgrounds with an interest in
improving reverse fault displacement hazard calculations. A shared goal was to provide as useful
a model as possible for engineering applications that wish to quantify fault displacement hazard
where structures and facilities are located near or across reverse faults and avoiding these
displacements may not be feasible. This work has been aided significantly by the UCLA-led
Fault Displacement Hazard Initiative (FDHI), and specifically the FDHI database (Sarmiento et
al., 2021) and the FDHI working group monthly discussions. Additional insights have been
gained through participation in the PFDHA benchmarking project led by the International
Atomic Energy Agency (IAEA) (Valentini et al., 2021).

The geometric relationships for the reverse faulting PFDHA model are shown in Figure 1.1.
Reverse events result in contraction (shortening) and thickening of the crust, with the hanging
wall (HW) block uplifted with respect to the footwall (FW) block. Surface rupture of the primary
fault results in ground offset with a vertical principal surface-fault displacement (D). A particular
point along the surface rupture is described by the ratio of its distance from the closest end point
of the rupture (x) to the total surface rupture length (L). Surface-fault ruptures that occur on
secondary faults or shears may be observed at distances (r) measured perpendicular to the
principal rupture. These ruptures produce distributed vertical surface displacements (d). The use
of vertical displacements as the intensity measure in our model (as opposed to, for example, 3-D



net displacement) is based on the types of measurements available in the empirical database and
is discussed later in the report.

Figure 1.1. Geometry and symbols used in this study to describe surface-fault rupture of reverse
earthquakes.



2 Probabilistic Framework

The hazard curve for principal surface-fault displacement can be calculated in the following
manner (Youngs et al., 2003; Moss and Ross, 2011):

v(Dy) = affmmax f(m) P* (D > Dolm,%) dm (2.1)

Mmin

where v(D,) is the mean annual rate of exceeding a specified principal surface displacement, o is
the mean annual rate of earthquakes of minimum magnitude m,,;, and greater from a specific
source, and f(m) is the probability distribution of earthquake magnitude on the source that
ranges from m,,;, to a maximum magnitude m,,,,. The term P*(D > Dy|m, x/L)defines the
probability that a principal displacement D exceeds a specified level D,. As the term suggests,
this probability is magnitude- and location-dependent. Commonly, this relationship is developed
for a specified style of faulting (i.e., normal, reverse, strike-slip) (Youngs et al., 2003; Petersen et
al., 2011; Moss and Ross, 2011), or for a specific tectonic region of mixed styles of faulting (e.g.,
Takao et al., 2013; 2018).

The conditional probability of displacement term is a product of two terms:
P*(D > Dy|m, x/L) = P(SurfRup|m, Slip) P (D > D0|m,%,5urfRup) (2.2)

The first term, P(SlipSurfRup|m), defines the probability that an earthquake of magnitude m
will produce surface-fault rupture. The second term, P(D > D,|m, x /L, SurfRup)), is the
displacement exceedance term, with the exceedance conditioned on an earthquake of magnitude
m that ruptures the surface and evaluated at a normalized location x/L along the principal surface
rupture. Solving equation (2.1) with the displacement exceedance term in equation (2.2)
expressed as a complementary cumulative distribution function produces an annualized hazard
curve that is the primary result of a PFDHA for principal faulting. Note that the equations for
principal faulting implicitly assume that the evaluation site crosses the location of future
principal fault rupture. In other words, there is no conditional probability that a principal
earthquake rupture, given that it ruptures the ground surface, will miss the evaluation site either



as a gap in the surface rupture or as an epistemic uncertainty or aleatory variability in surface
rupture location relative to the mapped location of the fault. Petersen et al. (2011) and Takao et
al. (2013, 2014) provide examples of this additional term.

The equation for distributed displacement PFDHA is similar to that of principal displacement but
with the perpendicular distance from the principal surface rupture to the evaluation site (r) and
HW or FW location as variables instead of x/L, as follows:

v(dy) = afmmax fm)f(rlm)pP* (d > d0|m, r, HWor FW,%) dm (2.3)

Mmin
where the distributed displacement probability term can be separated into parts as follows:

P*(d > dy|lm,r, HW /FW) = P(SurfRup|m, Slip)P(Rup at Site|m,r, HW or FW,x/L)
P(d > dy|lm,r, HW or FW,SurfRup, Rup at Site) (2.4)

For reverse (as well as normal) styles of faulting, the conditional probability of distributed
rupture with distance and the distributed displacement exceedance distribution depend on
whether the evaluation site is located on the hanging wall or footwall side of the fault.



3 Probability of Surface Rupture

The probability of surface rupture, P(SurfSlipRup|m) is the likelihood that a fault producing an
earthquake of magnitude m ruptures the ground surface. For purposes of PFDHA, surface-fault
rupture can be interpreted to also include near-surface fold scarp development (e.g., Streig et al.,
2007) or other forms of localized ground surface deformation related directly to slip at depth on
the primary seismogenic fault plane. Although factors such as local seismogenic thickness,
nucleation depth, fault dip, and geologic setting likely impact this probability, current empirical
models mostly focus on earthquake magnitude as the main explanatory variable (e.g., Youngs et
al., 2003; Petersen et al., 2011; Moss and Ross, 2011). Empirical models based on style of faulting
and/or local tectonic setting have also been developed (Youngs et al., 2003; Moss and Ross, 2011;
Takao et al., 2013, 2014), as well as models that look at both style of faulting and the local
geomorphic setting as quantified by the topographic Vs3o proxy method of Wald and Allen (2007)
and Allen and Wald (2009)(Moss et al., 2013; 2018).

Probability of surface rupture models have been based on the logistic regression that fits
dichotomous outcomes of empirical datasets (dataset of compiled earthquakes of magnitude m
that did or did not produce surface-fault rupture):

1
P(SurfRupIm) = W (31)

where a and b are constants fit to the data. Moss and Ross (2011) developed a database of global
reverse-faulting events for a moment magnitude (Mw) range of 5.5 to 8.0 that did and did not
rupture the surface by expanding the prior dataset of Lettis et al. (1997), and found values of a =
7.30 and b = —1.03 fit the data well. Compared to regression parameters fit to data from all styles
of faulting and normal styles of faulting only (Youngs et al., 2003), the global reverse data suggest
that the likelihood of surface rupture for reverse events is significantly lower than for normal
events (Figure 3.1). One physical reason that may partially explain this difference is that rock and
soil materials can sustain much higher compressive forces than tensile forces. See analytical
solutions for reverse and normal faulting in section 5.1 of this report.
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Figure 3.1. Probability of surface rupture for reverse, normal, and all slip types (after Moss and Ross,
2011).

Moss and Ross (2011) used Figure for their conditional probability of surface rupture given
magnitude term, and found in a sensitivity analysis that this probability had highest impact on the
resulting hazard curves compared to all other inputs. Subsequent work by Moss et al. (2013)
investigated more reverse mechanism data to provide a revised logistic regression for forecasting
surface rupture. Many predictor variables were tested (e.g., depth to top of seismogenic fault
plane, width of seismogenic fault plane) but the topographic-slope proxy values of Vs3o provided
the most predictive power, and Moss et al. (2013) interpreted this to reflect differences in near-
surface soil stiffness. Figure .2 shows the results of this statistical study for reverse and strike slip
mechanisms. In the logistic regression a p-value less than 0.05 was achieved for all curves.

The logistic function used in fitting the dichotomous data was the same as before, but the
function accounted for more input variables:

1
P(SurfRup|m,Vs3o) = m (3.2)

The input function is defined as a linear combination of regression coefficients [ and independent

variables x.

z =B+ p1x1 + Boxz (3.3)



The moment magnitude range for the data evaluated in Moss et al. (2013) was 4.2 to 8.7. The
resulting distributions for reverse faulting, with a proxy Vsso value of 600 m/s as the boundary
between stiff and soft, were defined as:
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Figure 3.2. Probability of surface rupture for reverse and strike slip mechanisms (after Moss et al., 2013).
The topographic-slope-derived thirty meter shear wave velocity value of 600 m/s was used as the
boundary between stiff and soft.

Follow up research by Moss et al. (2018) used physical fault box studies, analytical models, and
numerical simulations to further develop the understanding behind the likelihood of
displacement at depth propagating to the ground surface. It was found that the stiffness of near-
surface soils influenced the thickness of the shear band (Figure 3.3). Strain-hardening soils (i.e.,
soft) tend to have wide shear bands that absorb and diffuse deformations as they propagate
upwards thereby requiring more basal deformation to rupture the ground surface. Strain-
softening soils (i.e., stiff) have narrow shear bands that aid in propagating basal deformations to
the ground surface. It was also found that, compared to initial rupture of undisturbed soil, repeat
ruptures on the same plane required less basal deformation to rupture the ground.

(@)

Figure 3.3. The influence of soil stiffness on propagation of deformations to the surface through 40 m of
particulate material. Figure (a) is a simplified cross-sectional view of a shear band developed in a strain
hardening or contractive material with a thirty meter shear wave velocity less than 600 m/s, whereas
Figure (b) shows a shear band developed in a strain softening or dilatant material with a thirty meter
shear wave velocity of more than 600 m/s. The narrower shear band in the stiffer soil ruptured to the
surface with less basal displacement compared to the softer soil (after Moss et al., 2018).

As cautioned by Moss et al. (2018), the correlation of a topographic slope-derived proxy for Vsso
with the probability of surface rupture for reverse faults may be related to factors other than near-
surface soil stiffness. For example, the topographic roughness and average slope in active reverse
faulting environments may correlate with areas more likely to be crossed by emergent faults (i.e.,
faults intersecting the surface that can be traced by geologic mapping) versus areas more likely
to be underlain by blind faults (with tops of the faults located kilometers below the surface). An
example would be the San Fernando basin area of southern California, where the active, reverse
Santa Susana fault has been mapped across the rugged slopes of the Transverse Ranges directly
north of the basin, and the Northridge blind thrust fault has been identified beneath the gentle
slopes of the basin. In this example, the topographic slope—and by extension, any topographic
slope proxy—has an association with the type of reverse fault likely to be encountered. Steeper
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slopes are crossed by emergent fault strands of the Santa Susana fault zone (capable of surface-
fault rupture), whereas the gentle, relatively smooth slopes of the basin are underlain by blind
faults that are incapable of surface-fault rupture given their geometry. The potential for surface-
fault rupture in this case is controlled by the types of tectonic structures that have developed in
each environment and has no direct relationship with near-surface soil properties. Given such
concerns, application of Vs3o data to inform the applicable conditional probability of surface
rupture model should be done with some caution and on a project-specific basis.

As an alternative to empirical models of the conditional probability of surface rupture, which
rely on an underlying assumption of completeness of data for both surface rupturing and non-
rupturing earthquakes, one may develop a numerical approach to solve for the conditional
probability of surface rupture. Youngs et al. (2003) note that this alternative may be implemented
directly within a hazard code, which can place earthquake ruptures on a gridded, modeled fault
plane according to magnitude-area scaling relations and aspect ratio scaling rules. Such
approaches may then explicitly account for fault scaling relationships and local factors such as
fault source width. We note that these numerical approaches may be performed within or outside
the hazard code, and may use available magnitude-area and aspect ratio scaling models (e.g.,
Wells and Coppersmith, 1994; Leonard, 2010; 2014; Thingbaijam et al., 2017; Chiou and
Youngs, 2008; Hanks and Bakun, 2008; 2014; Shaw, 2009; 2013) as well as models for
earthquake hypocenter depth distributions and depth ratios (Chiou and Youngs, 2008; Goulet et
al., 2018).



4 Probability of Principal Displacement

4.1 SPATIAL DISPLACEMENT VARIABILITY

The probability term P(D > Dy|m, x/L, Sur f Rup) describes the probability of exceedance of a
specified level of displacement given that surface rupture has occurred. This probability may be
expressed as a complementary cumulative distribution function that is based on empirical data. It
can be determined from two probability distributions: a distribution for the variability of
displacement along the strike of the fault, and a distribution of the average or maximum
displacement.

Moss and Ross (2011) developed the distribution of variability along strike using 9 reverse
events from Wesnousky (2008) and Kaneda et al. (2008). The earthquake ruptures that were
analyzed include the following: 1896 Rikuu, 1945 Mikawa, 1971 San Fernando, 1979 Cadeaux,
1980 El Asnam, 1986 Marryat, 1988 Tennant Creek, 1999 Chi Chi, and 2005 Kashmir. The
displacement measurement locations were normalized by the total rupture length and were
treated as symmetric by folding at the midpoint of the fault rupture, or at x/L=0.5 (Figure 4.1).
An assumption underlying the normalization is that patterns of primary surface faulting are scale
independent, which we consider to be reasonable given studies of earthquake scaling (e.g.,
Savage and Brodsky, 2011). The folding approach is supported by Wesnousky (2008) and Biasi
and Weldon (2006), and although we note that asymmetric surface ruptures are common
(Manighetti et al., 2005), such asymmetric ruptures can be reasonably represented in the folding
approach as there is no prior information currently available to anticipate the asymmetry
direction. After normalization and folding, the ends of the rupture are at x/L = 0 and the
midpoint of the rupture is at x/L = 0.5. The displacement amplitudes are plotted as normalized
by either the average or the maximum displacement (Figure 4.1).

For statistical analysis, Moss and Ross (2011) grouped the data by 5% bin widths or 0.05
normalized units. A variety of statistical distributions (including normal, lognormal, beta,
gamma, and Weibull) were fit to the binned data, and the fits were scored using Anderson-
Darling goodness-of-fit tests (D’ Agostino and Stephens, 1986). A confidence level of 99% was
used to judge which distributions fit best. It was found that gamma, Weibull, and beta were
roughly equivalent in fitting the binned data; normal and lognormal distributions did not fit the
data as well. The fitting did not require normalized displacements to be zero at the ends of the
ruptures, in part because by using binned data there are nonzero displacements near the ends.
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Figure 4.1. Normalized displacement measurements from Moss and Ross (2011) using data from
Wesnousky (2008) and Kaneda et al. (2008). A normalized position along strike of x/L = 0 is the end of
the fault and x/L = 0.5 is the midpoint of the fault. Plot (a) shows the vertical displacement normalized
by the maximum, D/MD, and plot (b) shows it normalized by the average, D/AD.
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The FDHI project has provided new reverse-faulting displacement events and new
interpretations of existing events since Moss and Ross (2011) that lends to a replacement of the
Moss and Ross (2011) probability distributions. Information from 25 reverse and reverse-oblique
events (Table 4.1) in the FDHI database (Sarmiento et al., 2021) was parsed and the vertical
displacements were folded and binned in a similar manner as described above. Similar to Moss
and Ross (2011), the displacement distributions of binned x/L data had best fits to the gamma
and Weibull distributions. The gamma distribution (Equation 4.1) results for D /AD and

D /MD are presented below. Here the gamma distribution is using fitting parameters a (shape)
and b (rate) with an example of the fit shown in Figure 4.2.

a

b
f(z) = mZa_le_bz (4.1)

Gamma distribution parameters for D /AD for all FDHI reverse and reverse-oblique data are as
follows (showing preferred values and 5% and 95% confidence level values in square brackets):

a=2.54199 [2.34415, 2.75653] (4.2)
b=10.393391 [0.359691, 0.430249]

Gamma distribution parameters for D /MD for all FDHI reverse and reverse-oblique data are as
follows (preferred and 90% confidence interval values as above):

a=2.11095 [1.94833,2.28715] (4.3)
b=0.180981 [0.165331, 0.198112]

When using the gamma distribution, the first and second moments can be calculated from the
distribution parameters as:

Mean=a*b (4.4)
Stdev=sqrt(a*b"2)
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Figure 4.2. D/AD (left) and D/MD (right) versus x/L scatter plot, frequency plot, and distribution fit for all
FDHI events analyzed in this study.
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Gamma distribution parameters as a function of x/L bins were treated as linear and are shown in Figures
4.3 and 4.4. The linear interpretation was used for lack of justification for a higher order fit (e.g.,
polynomial).
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Figure 4.3. Gamma distribution parameter- a - for D/MD and D/AD.
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4.2 AVERAGE AND MAXIMUM VERTICAL DISPLACEMENT VS MAGNITUDE

Our approach of using normalized displacements as a function of along-strike location (e.g.,
D/MD(x/L)) to model displacement hazard requires compatible relationships for scaling the
normalized values. Our approach is to follow established methodologies and use log-linear
relationships between AD and Mw and MD and Mw (e.g., Wells and Coppersmith, 1994; Moss
and Ross, 2011). In order to develop candidate AD and MD scaling models applicable to reverse
and reverse-oblique styles of faulting, we updated earlier empirical databases (e.g., Moss and
Ross, 2011) by reviewing rupture information in the FDHI database (Sarmiento et al., 2021) and
recent literature. In addition to using empirical data, we examine a simple theoretical
displacement-magnitude scaling relation as a check on the empirical results. Using this
information, we develop criteria for distinguishing different classes of reverse surface-fault
ruptures, and construct log-linear AD-Mw and MD-Mw models for these different classes.

4.2.1 EMPIRICAL DATABASE AND SELECTION OF INTENSITY MEASURE

Our empirical database contains 60 historical, global earthquakes with reverse or reverse-oblique
styles of faulting that produced surface-fault rupture with reported AD and/or MD information
(Table 4.1). All events have estimates of Mw and MD, and 32 have estimates of AD. The
primary sources of information for magnitudes and AD values are the FDHI database (25 events;
Sarmiento et al., 2021) and Wells and Coppersmith (1994) (4 events). Most MD values are from
the Lettis et al. (1997) compilation utilized by Moss and Ross (2011) (30 events) and the FDHI
database (25 events). In all cases the AD or MD values from the FDHI database superseded the
values used previously by Moss and Ross (2011). In addition, all 15 reverse earthquakes in the
SURE 1.0 database (Baize et al., 2020) were reviewed and found to be also represented in the
FDHI database. For these earthquakes in common, the MD and AD values in Table 4.1 are based
on analysis of the FDHI database (instead of the SURE 1.0 database) because it is the more
recent of the two and has more extensive documentation.

For earthquake magnitudes, FDHI-reported values of Mw are adopted for 24 or the 25 FDHI
events in the database. The one exception is the magnitude estimated for the 31 August, 1896
Rikuu, Japan earthquake. In our database, this event is assigned Mw 7.2 based on the Myma 7.2
reported in current earthquake catalogs of Japan and an assumed ~1:1 conversion at this
magnitude level (Utsu, 2002). This value is substantially higher than the Mw 6.7 in the FDHI
database but lower than the Mw 7.4 listed for the earthquake by Moss and Ross (2011). The
FDHI value is based on the Takao et al. (2013) reported moment magnitude value that is derived
based on a linear magnitude conversion of My, = 0.78Mjy + 1.08. We infer this magnitude
conversion equation to be applicable to a lower magnitude range than the Rikuu earthquake. For
earthquake magnitudes of other (non-FDHI) events, the Mw values from Moss and Ross (2011)
are adopted. Moss and Ross (2011) used the magnitude conversion equations from Heaton et al.
(1986) to estimate Mw from other reported magnitudes compiled by Wells and Coppersmith
(1994), Lettis et al. (1997), and others.
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Table 4.1. Database of Historical Reverse and Reverse-Oblique Earthquakes with
Documented Surface-Fault Displacement

T ]
Rl Date Event Location | Mw AD"| MD Sources

r (m) | (m)

1 05/05/1 84 Zenkoji Japan 7.4 24 Lettis et al. (1997)
2 08/3 é/l 89 Rikuu Japan 72 | 21 | 3.6 FDHI

3 12/22/190 Manas China 759 5 Lettis et al. (1997)
4 1/23/1909 Silakhar Iran 732 2.5 Lettis et al. (1997)
5 1/3/1911 | Chon Kemin Kyrgg zsta 8;) 35 | 9.0 FDHI

6 |4/181911| Raver fran 6; 0.5 | Letts et al. (1997)
7 5/1/1929 Baghan Iran 7i5 2.1 Lettis et al. (1997)
8§ | 6/17/1929 | White Creek | W |78 52 | Lettis etal. (1997)

Zealand 9
9 5/6/1930 Salmas Iran 7.6 5 Lettis et al. (1997)
New 7.8 )
10 2/2/1931 | Hawkes Bay Zealand 9 4.6 Lettis et al. (1997)
Wells & Coppersmith
11 12/23/193 Changma China 7é8 2.0 | 4.0 (1994); Lettis et al.
(1997)
12 ! 1/22/193 Behabad Iran 6§2 1.0 Lettis et al. (1997)
13 4/21/1935 | Tuntzhuchio | Taiwan 732 3.0 Lettis et al. (1997)
14 1/15/1944 San Juan Argentina | 7.6 0.6 Lettis et al. (1997)
15 | 1/13/1945 | Mikawa- o 167 | 1.2 | 2.4 FDHI
Fukozu
16 |3/17/1947 |  Dari China 7§8 50 | Lettis etal. (1997)
California | 7.3

17 7/21/1952 | Kern County _USA 6 042 | 1.2 FDHI

18 2/12/1953 Torud Iran 6.6 1.4 Lettis et al. (1997)
19 12/1;/195 Farsinaj Iran 6i9 1.0 Lettis et al. (1997)
20 9/1/1962 Ipak Iran 7; 0.8 Lettis et al. (1997)
21 5/24/1968 | Inangahua New 7.1 0.52 Lettis et al. (1997)

ganu Zealand ) ) '
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1 T
INfaloxs Date Event Location | Mw DR L Sources
r (m) | (m)
22 1071 g/ 196 Meckering Australia 6§5 096 | 2.0 FDHI
23 7/24/1969 | Pariahuanca Peru 6.1 0.4 Lettis et al. (1997)
24 10/1/1969 | Pariahuanca Peru 6.6 1.2 Lettis et al. (1997)
25 3/10/1970 Calingiri Australia 530 0.18 | 0.33 FDHI
San California | 6.6
26 2/9/1971 Fernando _USA 1 047 | 1.0 FDHI
27 4/10/1972 Qir Iran 6.8 0.1 Lettis et al. (1997)
Wells & Coppersmith
28 9/6/1975 Lice Turkey 6.6 | 0.5 0.6 (1994); Lettis et al.
(1997)
29 1/1/1977 Mangya China 6.1 0.3 Lettis et al. (1997)
Wells & Coppersmith
30 9/16/1978 Tabas Iran 74 | 1.5 3.0 (1994); Lettis et al.
(1997)
31 6/2/1979 Cadoux Australia | 6.1 | 0.4 1.4 FDHI
32 1071 8/ 198 El Asnam Algeria 73 | 1.8 5.0 FDHI
33 6/11/1981 Golbaf Iran 6.6 0.11 Lettis et al. (1997)
34 7/27/1981 Sirch Iran 7.1 0.50 Lettis et al. (1997)
Coalinga California
35 6/11/1983 Nuifiez 54 0.64 Lettis et al. (1997)
, USA
aftershock
. . 6.8 Wells & Coppersmith
36 8/23/1985 Wugai China 9 1.6 (1994)
37| 33071986 | MAYAL | A cralia | 57 | 0.34 | 11 FDHI
Creek
Tennant
38 | 1/22/1988 | ., Cock Australia | %2 | 039 | 0.9 FDHI
(Kunayungk 7
u)
Tennant 6.4
39 1/22/1988 Creek Australia 4 0.58 | 1.1 FDHI
(LSW)
Tennant . 6.5
40 1/22/1988 Creek (LSE) Australia 2 0.61 | 1.8 FDHI
41 | 1271988 | Spitak | Armenia | % | 0.90 | 16 FDHI
a2 |19 Chenoua | Algeria | 6.0 0.12 | Lettis et al. (1997)
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] ]
INEiElsS Date Event Location | Mw DR L Sources
r (m) | (m)
Wells & Coppersmith
3 | 1Y 23/ 981 Ungava | Canada | 6.0 | 0.80 | 1.8 | (1994); Lettis ct al.
(1997)
44 | 612071990 | Rudbar- fran | 7.4 1.0 | Lettis et al. (1997)
Tarom
45 | 8/19/1992 | Suusamyr Kyrgny zsta | 59 42 | Lettis et al. (1997)
46 9/29/1993 | Killari-Latur India 6.2 | 0.49 | 0.80 FDHI
Iwate
47 9/3/1998 (Inland) Japan 5.8 10.22 | 0.38 FDHI
48 9/21/1999 Chi-Chi Taiwan 726 26 | 9.8 FDHI
49 6/22/2002 Avaj Iran 6.5 0.7 | 0.8 Walker et al. (2005)
50 2/22/2005 Zarand Iran 6.4 1.0 | Talebian et al. (2006)
51 10/8/2005 Kashmir Pakistan | 7.6 | 1.5 7.1 FDHI
10/10/200 ) . King et al. (2019);
52 7 Katanning Australia | 4.7 | 0.17 | 0.3 Yang et al. (2021)
53 5/12/2008 | Wenchuan China 7.9 | 2.2 6.0 FDHI
54 3/23/2012 Pukatja Australia Sél 0.15 | 0.48 FDHI
55| 101 g/ 2011 Bohol Phlhfpme 7.1 | 14 | 5.2 FDHI
56 ! 1/21/201 Nagano Japan 6.2 | 048 | 1.2 FDHI
57 5/20/2016 | Petermann Australia | 6.0 | 0.25 | 0.90 FDHI
sg | H/I32001 goikoura New 1581 22 | 103 FDHI
6 Zealand
. . King et al. (2019);
59 11/8/2018 | Lake Muir Australia | 53 | 0.28 | 0.75 Yang et al. (2021)
60 i 5/201 Le Teil France 49 10.05 | 0.11 FDHI
Notes:

1. AD and MD values in bold are measures of vertical offset (vertical separation and/or scarp height).
Values in italics are cases where the vertical offset value was not specifically provided, and these values
may represent vertical offsets, some combination of vertical and horizontal displacement, or net

displacements.

All earthquakes in the database occurred in continental settings in both active deforming crust
and stable continental crust. The earthquakes span the period 1847 to 2019 and range in
estimated moment magnitude from Mw 4.7 to 8.02 (Figure 4.5). Although the distribution is
global, a full quarter of the events (15) are from Iran, and 11 are from Australia. The MD values
for the earthquakes from Iran and Australia are indicated by circle and square symbols,
respectively. Adding three earthquakes in Canada, France, and India to the 11 Australia
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earthquakes, 14 events (23%) represent stable continental and/or low seismicity settings. A slight
majority (31 of 60) are from active crustal settings other than Iran, with most of these from China
(6), Japan (5), New Zealand (4), and USA (3; all California).

Reverse and Reverse-Oblique Surface-Fault Ruptures
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Figure 4.5. MD and AD data vs moment magnitude in the reverse and reverse-oblique fault rupture
database. MD values for earthquakes in Iran and Australia are indicated by an open circle and square,
respectively.

As discussed earlier in the report, our model approach is to use vertical displacement as the fault
displacement intensity measure rather than net displacement. The decision to base our model on
vertical displacement as the fault displacement intensity measure is based on our evaluation of
available data, and in particular the meticulously documented data in the FDHI and SURE 1.0
databases. For clarity, the values of vertical displacement being discussed here are more
specifically field-based measurements of either vertical separation or fault scarp height, and
either can differ from the vertical component of displacement based on the offset feature being
measured (e.g., Caskey, 1995; Yang et al., 2015). The values of AD and MD in Table 4.1 that are
in bold type represent the vertical displacement component, either as documented in the FDHI
database or as specified in the literature (e.g., Lettis et al., 1997). Values in italics are
displacement measures for which a vertical component was not specified or could not be
verified. These values may represent vertical displacement or some combination of vertical and
horizontal displacement components. We assume these unspecified values are a reasonable
estimate of the vertical component and include them in our analyses.
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The detailed compilation of field measurements provided in the FDHI database suggests that
there are few reliable measurements of net surface fault displacement for reverse and reverse-
oblique earthquakes, in contrast to abundant measurements of vertical displacement (Table 4.2).
Net displacement, of course, is a 3D vector consisting of orthogonal components of vertical
displacement, fault-parallel horizontal displacement (right-lateral or left-lateral), and fault-
normal horizontal displacement (shortening or extension). For reverse faulting earthquakes, the
fault-normal shortening in a surface-fault rupture is related to the near-surface fault dip, and for
faults with an intermediate or gentle dip this component represents a substantial portion of the
net displacement. For reverse-oblique earthquakes and some reverse earthquakes, the amount of
fault-parallel lateral displacement may represent a non-trivial fraction of the total as well.
Despite this recognition that the two horizontal components of displacement are important for
understanding net displacement of reverse-faulting earthquakes, the majority of displacement
observations in the FDHI database include a record of a vertical displacement component but no
record of a lateral or shortening component. In these instances, it is unclear whether these
horizontal displacement values were indeterminate (due to lack of offset markers) or observed to
be minor but left undocumented.

Table 4.2. Summary of number of principal displacement measures, displacement
components, and ratios of vertical to net displacement where available.

. N’. Fault- | Fault- 3D Ratio, Ratio,
FDHI Event princip al Yert.z parallel | normal | (net) | vertto2D | wert. to
g ) S S5 | el | dten® | et t disp.”
measures! p. p. p. isp. net disp.
Bohol 121 121 0 0 0 n/a n/a
Cadoux 33 22 7 0 4 n/a 0.46
Calingiri 27 21 6 0 0 n/a n/a
. 0.84 0.66
Chi-Chi 218 217 127 90 0 © li—l 0) (n=88)
' ) (0.18-1.0)
Chon Kemin 38 38 0 0 0 n/a n/a
El Asnam 30 29 8 0 0 (0249_(1 0) n/a
0.53
Iwate (Inland) 32 32 10 0 0 (0.05 to n/a
0.86)
o |00,
Kaikoura® 796 796 796 796 0 (0.24— (0.23
0.75) 0.70)
Kashmir 236 230 20 3 0 (1. (}_01 0) n/a
0.64
Kern County 30 18 15 15 0 (0.07- n/a
0.96)

20




N,

rincioal | Vert Fault- | Fault- 3D Ratio, Ratio,
FDHI Event prneip .5 | parallel | normal | (net) | vertto2D | wert. to
disp. disp. .3 .4 . s 6 L
measures! disp. disp. disp. disp. net disp.
Killari 10 8 3 0 0 0.95 n/a
Le Teil 6 5 0 1 0 n/a n/a
Marryat Creek 73 73 0 0 0 n/a n/a
0.79
Meckering 61 45 26 0 9 (0.51- n/a
0.98)
Mikawa- 0.91
Fukozu 68 |26 0 O | o71-1.0)| ™o
0.66
Nagano 96 81 1 63 0 (0.23- n/a
0.99)
Petermann 83 83 0 0 0 n/a n/a
Pukatja 26 26 0 0 0 n/a n/a
Rikuu 15 15 1 0 0 0.0 n/a
0.63 0.42 (n=5)
San Fernando 165 43 36 40 93 (0.31- (0.18-
0.97) 0.66)
Spitak 17 16 13 1 0 0.82 0.55 (n=1)
P 0.71-1.0) | ~
fennant Creek | 5 16 1 0 0 n/a n/a
;ennam Creeck |4 1 0 0 0 n/a n/a
pommantCreek | 3¢ 35 0 0 1 n/a n/a
Wenchuan’, 0.74
SW. GI 26 24 13 0 0 (0.27-1.0) n/a
Wenchuan, 041
SW. G2 120 119 16 0 0 (0.0-0.85) n/a
Wenchuan, 0.74
Tear, G1 33 321 2 0 0 | 037-10| ™o
0.69
XZ‘;CI(’}“;“’ 136 136 28 0 0 (0.35— n/a
’ 0.92)
Wenchuan, 0.87
FT, Gl 36 36 14 0 0 (0.57-1.0) n/a
Wenchuan,
FT. G2 32 32 0 1 0 0.87 n/a
\yenchuan, 13 13 4 0 0 0.86 n/a
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rirll\i’i al | Vert Fault- | Fault- 3D Ratio, Ratio,
FDHI Event prneip .5 | parallel | normal | (net) | vertto2D | wert. to
disp. disp. .3 .4 . s 6 L
measures! disp. disp. disp. disp. net disp.
ﬁ;nccl}l;a“’ 4 4 2 0 0 0.94 n/a
Wenchuan, 0.68
NE. G1 91 91 54 0 0 (0.04-1.0) n/a
0.66
gEenglzua“’ 44 44 14 0 0 (0.43- n/a
’ 0.86)
Notes:

1. Number of principal displacement measurements in FDHI database.

2. Number of vertical offset measurements. Most are vertical separation, but some are scarp height.

3. Fault-parallel displacement measurements, defined as right-lateral or left-lateral.

4. Fault-normal displacement measurements; most are shortening.

5. Three-dimensional, or net, displacement measurements. The numbers listed here are for cases where the net displacement was recorded,
but the component parts were not recorded in the database

6. Ratio, vertical displacement to a 2D displacement. Vast majority of cases are of the 2D displacement consisting of a vertical and fault-parallel
(lateral) component. A ratio of 0.71 indicates a 1:1 vertical to lateral displacement ratio. Values in italics are based on 4 measurements or
fewer.

7. Ratio, vertical displacement to the 3D (net) displacement. There are very few cases where both the vertical and net displacement are
reported. The italicized values for the Cadoux earthquake are based on a reported vertical displacement near a reported 3D displacement;
the result is therefore unreliable.

8. The Kaikoura earthquake rupture was divided into 17 parts based on rupture pattern. The preferred values for the vertical displacement
ratios shown are based on the four sections of the rupture that displayed a clear reverse displacement pattern; the range of ratios shown are
based on the range of ratios calculated for each section; at a site-by-site scale, the range of vertical displacement ratios is much broader.

9. The Wenchuan earthquake rupture was divided into four parts: the southwest (SW) section, the tear fault, the frontal thrust, the parallel
rupture behind the frontal thrust, and the northeast (NE) section. Also, there are two sets of rupture measurements that were analyzed
separately and then averaged: Group 1 (G1) used vertical separation as the vertical measure; group 2 (G2) used scarp height as the vertical
measure.

We recognize the non-trivial challenges of collecting post-earthquake offset measurements,
especially offset measurements that capture the 3D net displacement vector. Fault-normal
shortening is difficult to measure accurately in the field, as reverse fault scarps are commonly
irregular and chaotic, bury the footwall piercing point, and often destroy the near-surface fault
plane (e.g., McCalpin and Carver, 2009; Yeats et al., 1997). The fault-parallel horizontal
component of surface displacement is also difficult to document for reverse events. Whereas
vertically offset landforms and scarp faces are relatively common along reverse ruptures, clear
lateral offset features are relatively rare, difficult to reconstruct, and often treated with secondary
importance to a more imposing (and compelling) vertical offset feature. In addition, it is
uncommon for field reports to record zero or minimal lateral offset along reverse earthquake
ruptures unless the field investigators are particularly thorough.

A review of the FDHI database for the 25 reverse and reverse-oblique ruptures demonstrates that
there are insufficient data to calculate net MD or AD for most of the events (Table 4.2),
consistent with the known challenges to field data collection described above. Only two
ruptures—the 1999 Chi-Chi and 2017 Kaikoura—have sufficient detail in measured
displacement components such that a reliable estimate of net displacement may be calculated;
the 1972 San Fernando earthquake may represent a third. Based on such incomplete
documentation of a lateral component of slip (even if documenting a zero value), and a very low
number of shortening measurements, we suspect that many surveys of historical earthquake
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ruptures that report “net” displacements are more likely reporting just the vertical component or
perhaps vertical and lateral only (but not shortening). Thus, we interpret the values for AD and
MD in italics in Table 4.1 to be reasonable estimates of vertical displacement, and probably a
closer estimate of vertical displacement than the 3D net displacement.

Using information from the Chi-Chi rupture plus sections of the Kaikoura rupture that had a
dominant reverse component, we calculate average ratios of vertical displacement to net
displacement of 0.63 (Kaikoura rupture, reverse-dominated sections) and 0.66 (Chi-Chi rupture).
The point-specific variability in the vertical displacement to net displacement ratio varies from
less than 0.2 to 1.0. A few other opportunities where the net displacement was measured suggest
vertical to net ratio values of approximately 0.4 to 0.6. From these limited examples, we suggest
a general approximation for converting vertical displacements to net displacements:

ADV ~ 06 X ADNET (41)

where ADy is the average vertical component of displacement and ADner is the average net
displacement for reverse and reverse-oblique faulting. For a general idea, the ratio value of 0.6 is
consistent with a near-surface dip angle of approximately 40 degrees and a horizontal to vertical
(H:V) displacement ratio of approximately 0.5. We emphasize that the variability of this ratio for
any one earthquake rupture and at any point along a rupture is high and should be considered in
any analysis.

There are many more opportunities to estimate the ratio of vertical displacement to a 2D
displacement (combination of vertical and one horizontal displacement) (Table 4.2). These
ratios, which generally range in rupture averages of about 0.6 to 0.9, represent maximum values
for the ratio of vertical to net displacement. As these 2D displacements are mostly combinations
of vertical and lateral displacement, this range in 2D ratios is consistent with H:V displacement
ratios of 0.5 to 1.3.

With a focus on the fault displacement intensity measure of vertical displacement, values of
MDy were compiled and values of ADv were calculated from the FDHI database and entered in
Table 4.1. We hereafter use MDv and ADv when specification of the vertical component is
important to distinguish from the net displacements. Otherwise, the terms MD and AD (no
subscript) are used with the implied specification of the vertical component for our model.

The procedure used to harvest values from the FDHI database is as follows. First, data were
filtered for principal and “cumulative” displacements only (distributed displacements and “total”
displacements were removed). Measurements with a use recommendation of “Toss” were
removed, such that records either judged “keep” or “check” were considered. If a preferred value
is entered, the preferred value is considered. If no preferred value is provided, but a range (i.e.,
min and max) is recorded, the midpoint of the two is used, if available, and if only one bounding
value is provided that value is considered after specific review. For each event, the maximum
vertical amount (either scarp height or vertical separation) was used for the event MDy.

The method for calculating ADv from the FDHI data is less straightforward. First, data were
filtered to preclude distributed displacement measurements, total measurements, and “Toss”
records as described above for MDy. For each record of either vertical separation (VS) or scarp
height (SH), a preferred value is noted, if available. If there is no preferred value but a range is
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provided, the midpoint of the two is noted. If only one bounding value is provided, that value is
considered after specific review. Next, the spatial distribution of points is examined as well as
rupture complexity such that data are grouped into separate sections. If the spatial distribution is
generally uniform, all data are within one group. For more complex ruptures such as the 2008
Wenchuan and 2016 Kaikoura earthquakes, measurements are grouped by part of the rupture
(e.g., Wenchuan contained a SW section, a Tear Fault section, a Frontal Thrust section, and
Parallel Thrust section, and a NE section; Table 4.2). Within each group, the arithmetic mean of
the vertical displacements is calculated. Our decision to use the arithmetic mean of the
displacements—as opposed to the geometric mean or median—is based on our interpretation that
most non-FDHI records of AD are closer to measures of the arithmetic mean, and thus the
arithmetic mean provides the most consistent measure when combined with non-FDHI data. The
arithmetic mean value of each group is combined with the other groups within each earthquake
rupture by weighting based on the rupture length of the group as a fraction of the total rupture
length.

The final database in Table 4.1 includes 32 values of AD and 60 values of MD. These data are
plotted in Figure 4.5. All records have estimates of Mw, but other details such as rupture width,
fault dip, nucleation depth, etc. have not been compiled. We have not compiled alternative
estimates of Mw, MD, AD, nor have we developed quality (reliability) ratings for the different
events. Implicit in the compilation is an assumption that there are no systematic errors in M,
MD, or AD estimates across the database or systematic correlated errors between parameters.

4.2.2 DISPLACEMENT SCALING RELATIONS

A key objective of the MD & AD database is to derive empirical relations between MD or AD
and Mw that can be used to scale the normalized displacements (D/MD or D/AD) that have
model distributions as a function of x/L. As our primary application is hazard assessment for
engineering evaluation, an objective of the final models is that they are provided with
appropriate context regarding the earthquakes used to derive the model parameters and the
underlying assumptions or interpretations of the data. Ideally, alternative models are presented,
each with clear documentation of the criteria underlying the data selection process and intended
applicability of the model.

As will be described below, we interpret several earthquakes in the database to have produced
surface displacements that are much lower than would be expected given their magnitude, even
accounting for natural variability. These events are named “incomplete” surface ruptures in
contrast with “complete” surface ruptures that have displacements that scale more as expected
given their moment magnitude. Our goal is to identify “incomplete” surface rupture events, filter
them, and develop a set of ADv-Mw and MDv-Mw models based only on “complete” ruptures.
We also develop models that incorporate the “incomplete” events, acknowledging that in the vast
majority of examples the underlying data are unlikely to be flawed, and therefore the
“incomplete” events represent physical examples of surface-fault displacements from reverse
earthquakes. However, until it is better understood whether a particular tectonic setting, crustal
fault geometry, etc. is associated with much-lower-than expected displacements, it is desirable
for engineering applications to have a more conservative model available for consideration.
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Conservatism in this case applies both to estimates of median scaling and the variability about
the median. Even if the data indicating much-lower-than expected surface displacements are
judged to be reliable, it is another question as to whether such data should be included in a
regression to be used in hazard. Although it is current standard practice to develop mean-
centered models with clear documentation of uncertainties and allow engineering design criteria
and/or stakeholder decision-making to determine the appropriate hazard level for evaluation, it is
also not reasonable to develop empirical models based on data that are not representative of the
phenomena the model purports to capture. If a fault under investigation for a site-specific FDHA
demonstrates geomorphic or geologic evidence of recent, relatively large surface-fault ruptures,
for example, then an empirically-based model ideally is developed based on examples of past
“complete” surface-fault rupture that have occurred on similar faults.

By inspection of Figure 4.5, there are a few data outliers that require some consideration as to
whether they should be considered “incomplete” ruptures and filtered out for additional analysis.
Several MD datapoints appear to have much lower than expected values, including the MD
measurements that plot below AD values of comparable Mw. In particular, there are four values
that have MD < 0.2 m, only one of which is associated with an earthquake Mw < 5.0. From our
review of these examples, it seems highly likely that these low MD values are based on reliable
measurements, and that more modern post-earthquake surveys would likely resolve different
values but not change the MD estimates by an order of magnitude or even a factor of 4.

4.2.3 AD VS MAGNITUDE SCALING, INITIAL ANALYSIS

The AD data span a magnitude range of Mw 4.7 (Katanning, Australia) to Mw 8.02 (Chon
Kemin, Kyrgyzstan) and a vertical displacement range of 0.05 m (2019 Le Teil, France) to 3.5 m
(1911 Chon Kemin, Kyrgyzstan) (Figure 4.6). There are 11 AD values from Australia, which
represent the vast majority of events in the 4.5 < Mw <6.7 range (indicated by boxes in Figure
4.6). The country with the next-highest number of events in the database is Japan (4 AD values;
indicated by diamonds in Figure 4.6), which span a magnitude range of Mw 5.8 to 7.2. The data
show a generally linear trend across the magnitude range for the log of the displacements, and
we fit an initial least-squares linear regression to the entire dataset. Following Wells and
Coppersmith (1994) and others, we report results in the form:

log19g AD = a + bm + s¢, (4.2)
where a and b are the intercept and slope of the best-fit regression line, respectively, m is
magnitude in the moment magnitude scale, s is the standard error in the log;y AD value, which

we take here to be equivalent to the standard deviation, and ¢ represents the standard normal
probability density function.
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Figure 4.6. Log-linear plot of AD vs MW for the 32 reverse and reverse-oblique faults in the database.
Australia and Japan events indicated by symbols.

The results of the initial fit to the 32 datapoints yields values of a = —2.98 , b = 0.427,and s =
0.18. The preferred and + 1s lines show a reasonable fit, with residuals being approximately
equally distributed above and below the average line across all magnitudes (Figure 4.7).
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Figure 4.7. AD vs MW data with preferred least-squares linear regression line (solid) and £ 1 standard
error lines (dashed).
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The empirical AD data are also compared to a theoretical average displacement for dip-slip
faults, which we will indicate as D. To estimate D, we combine the definition of Mw by Hanks
and Kanamori (1979):

log1o Mo = =My +9.05 (4.3)
where seismic moment Mj is in N-m, with the definition of M,:
M, = uAD (4.4)

where u is the shear modulus, A is rupture area, and D is the average displacement on the rupture
plane. Substituting the seismic moment definition into equation (4.3) and rearranging, we get:

log 4t +10g10 A + 10819 D = =My +9.05. (4.5)

The value of ¢ may be treated as a constant, with commonly estimated values of approximately
3.0-3.3 x 10'° N/m?. Also, we recognize that the constant in the moment magnitude definition is
also commonly stated as 9.1 instead of 9.05 based on Kanamori (1977), and our decision to show
9.05 instead of 9.1 in Equation 4.3 is somewhat arbitrary. The difference in the moment
magnitude definition constant and difference in estimated u using values noted above results in a
maximum impact of about 10% on estimated D, which is small and is implicitly contained within
our final estimation of Mw-D uncertainty. We continue with the constant of 9.05 and a value u =
3.0x10%° N/m? as that combination is centered reasonably well within the range of constant and
p combinations and is nearly identical to a combination of 9.1 and u = 3.3x10° N /m? used by
Leonard (2010).

Using the simple scaling arguments and empirical analysis by Leonard (2010) for dip-slip
faulting, where log;o A < My, we can use the Leonard (2010) relationship:

My =logio A — 2.0 + sg, (4.6)

where 4 is in m?, and s and ¢ are the same as described for Equation 4.2. We estimate s, the
standard deviation in Mw from 4, to be approximately 0.1-0.2 based on examination of the
literature and alternative proposed models (Wells and Coppersmith, 1994; Hanks and Bakun,
2002; 2008; 2014; Ellsworth, 2003; Leonard, 2010; Shaw, 2009; 2013). For fun and to
incorporate uncertainties discussed above, we define a “useful” estimate of the standard
deviation s, = 0.2 in the analysis. Rearranging, substituting in the prior equation, and adopting
u = 3.0x10%° N /m?, the relation between D and My is:

log,o D = 0.5Myy — 3.43 + 0.2¢. 4.7)

The scaling-based D with + 1 s,, is plotted along with the vertical surface AD data in Figure 4.8.
The prediction is that D would be comparable to, but slightly higher than, the AD data for
“complete” surface ruptures given our use of ADv for the FDHI events and our interpretation
that most other empirical AD data are based on vertical displacements and not net displacement.
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Slightly higher D values also would be consistent with a proposed shallow slip deficit (e.g.,
Fialko et al., 2005; Xu et al., 2016; cf. Marchandon et al., 2021), whereby localized surface fault
displacement is estimated to be less than the displacement at seismogenic depths (Dolan and
Haravitch, 2014). In contrast, Figure 4.8 shows the theoretical D-Mw model to provide a
reasonable fit to the ADv data, and several earthquakes at the lower magnitudes (all events with
Mw < 5.5) show measured vertical ADv values greater than those predicted by the model at the
+1 s, level.
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Figure 4.8. AD vs MW data with a theoretical log displacement-magnitude relation.

Plots of the data residuals to the two regressions (Figure 4.9) show reasonably unbiased results,
with the residuals of the scaling-based relation showing the slight negative slope with magnitude
that reflects the difference between the slope of the empirical regression (0.427) and the slope of
the scaling-based equation (0.5). The empirical regression has a coefficient of determination (R?)
of 0.83, a residual sum of squares of 0.981, and a residual standard error (again -- assumed
equivalent to the regression standard deviation) of 0.18. In comparison, the scaling-based
equation has an R? value of 0.80, a residual sum of squares of 1.15, and an equivalent residual
standard error (using the same n-2 = 30 degrees of freedom as the empirical regression) of 0.20.
Given uncertainties in the Mw and AD values in the database, we consider both models to be
useful for purposes of further data evaluation.

28



a) Residuals, empirical regression b) Residuals, scaling-based D-bar

06 0.6 regression
5 04 2 04
g () g ) [}
() J
ié_ 02 @ s ® R o® o ° . % 0.2 e o o® ®
- g e O
2 0 e *. o .t g— 0 ) '.'.... ()
5 ° Y @
S 0.2 oo § 502 . | ol
g g °
(_tg -0.4 ® 7_;-0.4
3 L] S
< -0.6 5 -0.6 ®
i 8
-0.8 @ -0.8
45 50 55 60 65 7.0 75 80 85 45 50 55 6.0 65 70 75 80 85
Moment Magnitude Moment Magnitude

Figure 4.9. Plots of residuals of log10AD data to (a) the least-squares regression, and (b) the scaling-
based regression.

We note that the event with the largest absolute residual in both regressions is the 1952 Mw 7.36
Kern County, California earthquake (Oakeshott, 1955). This earthquake, which ruptured the
White Wolf fault at the southern margin of California’s Central Valley, has long been recognized
for the unusual surface-fault rupture (Buwalda and St. Amand, 1955), which included a blind
rupture along its southwest portion (no surface rupture) and surface displacements much lower
than expected given the earthquake magnitude and calculated displacement at depth (e.g.,
Bawden, 2001).

Another useful piece of information for evaluating whether certain AD or MD values in the
database represent incomplete ruptures, and for evaluating whether certain values are
problematic and may be of poor quality, is the evaluation of the ratio of MD to AD. This ratio is
a simple measure of the variability of surface displacements about the average, although focused
on the upper half of the displacement distribution. Figure 4.10 shows MD/AD versus Mw for the
32 reverse and reverse-oblique earthquakes in the database, with the solid line indicating the
median value and dashed lines indicating the 10" and 90" percentile values.
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Figure 4.10. MD/AD ratios of the 32 events vs moment magnitude. Median ratio shown as a solid line,
and 10th and 90th percentile ratios are dashed lines.

The plot shows no apparent relation between MD/AD and magnitude, and most of the data
(between 10™ and 90™ percentiles) indicate a ratio of 1.7 to 3.7. The median value is 2.3. These
results are generally similar to the findings of Wells and Coppersmith (1994) who point to a
general rule of thumb that MD is approximately two times AD. Surface-fault ruptures with ratios
close to 1 are unexpected, as these indicate little displacement variability and maximum
displacements that are close to the average displacement. The events with the two lowest
MD/AD ratios in Figure 4.10 are the 2002 Mw 6.5 Avaj, Iran earthquake (AD = 0.7 m; MD = 0.8
m) and the 1975 Mw 6.6 Lice, Turkey earthquake (AD = 0.5 m; MD = 0.6 m) (Table 4.1). The
two events with the highest MD/AD are the 2005 Mw 7.6 Kashmir, Pakistan earthquake (AD =
1.5 m; MD = 7.1 m) and the 2016 Mw 7.8 Kaikoura, New Zealand earthquake (AD = 2.2 m; MD
=10.3 m) (Table 4.1). Although the Avaj and Lice earthquakes are not in the FDHI database,
and therefore little analysis is available as to the thoroughness of the field surveys, the Kashmir
and Kaikoura events are in the FDHI database and are well reviewed and vetted. Although one
interpretation is that the AD and MD estimates for the Avaj and Lice earthquakes are unreliable,
an alternative is that the low MD/AD ratios may be an attribute of an incomplete surface rupture,
in that the up-dip rupture extent included the ground surface but perhaps not sufficiently to
reflect the displacement variability and/or absolute amounts that occurred at depth. We note that
at this point we are not filtering any events based on MD/AD from use for log D - Mw scaling
relations, but rather the intention is to explore the average and range of MD/AD ratios as
indicators of the expected natural variability for a complete rupture.
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4.2.4 EVALUATING MD DATA FOR INCOMPLETE

The empirical and scaling-based logi0AD - Mw relations, combined with estimates of MD/AD,
are used to evaluate the broader MD database and identify outlier events that are candidates for
“incomplete” ruptures. To restate our objective, we want to develop logioAD-Mw and logioMD -
Mw models useful for predicting displacements that are representative of “complete” reverse or
reverse-oblique surface-fault rupture, which we informally define as earthquakes producing
surface displacements that are generally comparable to displacements over the full rupture plane
at depth. Separately, we can also develop models based on the events interpreted as producing
“incomplete” surface-fault ruptures such that practitioners can have the flexibility to include a
combination of models in a weighted logic-tree approach.

Figure 4.11 is a log-linear plot of log10MD vs My, for the 60 reverse and reverse-oblique events in the
database. Also shown are solid and dashed lines representing the empirical log;y AD — My, and scaling-
based log;, D — Myy relations. Events with estimated vertical MD values that plot below and near the
predicted average displacement lines are suspected of representing incomplete ruptures according to
our general definition. However, our goal is to develop a mean-centered model for complete ruptures,
and therefore we need to consider cases where AD is below average but still “complete.”
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Figure 4.11. Estimated vertical MD vs MW data showing alternative relations for average displacement.
MD values that plot below the predicted AD lines are candidates for incomplete surface-fault rupture.
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For filtering criteria, we only want to exclude events where the MD is less than expected even
for cases of a below-average AD (but still within an expected range for a “complete” rupture).
To do this, we consider two criteria. First, we evaluate predicted D and AD values at the -1
standard deviation level, using our estimated “useful” standard deviation of s,, = 0.2 for the
theoretical D model and s, = 0.18 for the empirical AD model. Second, we assume the
MD/AD ratio is not less than a factor of 1.7 (the 10" percentile value from the dataset; Figure
4.10), which retains a minimum of expected rupture variability between AD and MD. Events
failing these criteria are flagged as incomplete and removed from the regression analysis for
complete ruptures.

Our criteria for characterizing an event as an incomplete rupture uses a minimum threshold line
defined by the -1 s AD regression prediction (noted as AD(-1s)) times a 1.7 MD/AD value
(representing the 10" percentile in the MD/AD dataset; Figure 4.10). These criteria allow for
lower than average “complete” displacements with an also below-average upper tail variability
(indicated by MD/AD). Figure 4.12 shows the MD values above the threshold values as solid
blue circles and the MD values below the threshold as open blue circles. Of the 60 events, 15 are
interpreted as incomplete based on these criteria. These events span a range of magnitudes from
Mw 4.9 to Mw 7.6 and represent a range of tectonic environments from low seismicity areas
(e.g., Le Teil, France) to active deforming areas (e.g., Kern County, California). For reference,
we also show in a gray dash-dot line a threshold based on the D(-1s) regression line and the
minimum 1.7 MD/AD value. Adopting this as the main threshold criterion line would have
added one additional earthquake to the “incomplete” category, but overall the results using this
alternative average displacement relation are similar.
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Figure 4.12. MD data and interpretations of complete (solid circle) or incomplete (open circle) reverse
and reverse-oblique ruptures based on the AD(-1s) and MD/AD>1.7 criteria line (in purple). For
reference, a similar threshold line derived from the scaling-based D-bar(-1s) relation is shown in gray.

Of the 15 earthquake ruptures that are classified as incomplete based on analysis of their MD
values, three have estimated values of AD that are used in the AD regression. These three
earthquakes are the 1952 Kern County, California, 1975 Lice, Turkey, and 2019 Le Teil, France
events. The Kern County and Le Teil earthquakes had the highest absolute residuals in the
analysis of logi0AD vs Mw (Figure 4-5), and the Lice earthquake was one of two events with a
suspiciously low value of MD/AD (Figure 4-6). In the case of the Le Teil earthquake, the AD
and MD values are from very precise measurements of surface rupture by Ritz et al. (2020), so
the displacement values are well constrained and documented (Sarmiento et al., 2021).
Importantly, Ritz et al. (2020) show greater amounts of vertical deformation distributed over a
broad (10s to 100s of meters wide) zone in the hanging wall based on differential InSAR
analysis. If the broad aperture folding plus fault deformation are considered, the MDv for this
event is 0.23 m and the ADv is closer to 0.12 m. These values would be more aligned with a
complete earthquake rupture. This finding indicates that at least some of the events interpreted as
having incomplete surface-fault ruptures may have total vertical displacements that scale with
“complete” ruptures, but a significant fraction of the total vertical deformation is distributed as
broader folding rather than as localized surface-fault rupture.

Given the classification of the Kern County, Lice, and Le Teil earthquake ruptures as
incomplete, we re-run the least-squares linear regression analysis of logi0AD vs Mw with these
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events removed from the empirical dataset. Figure 4.13 shows the revised AD regression line
based on the 29 earthquakes with estimated AD and interpreted as having complete ruptures. The
new regression has intercept, slope, and regression standard error values of a = —2.87,b =
0.416,s = 0.13. Also shown in Figure 4.13 are the median regression line using all 32 AD
records and the scale-based median D-bar line. The plot shows strong similarity to the initial AD
regression, with the main differences being a slight lowering of the slope and a reduction in the
regression standard error.
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Figure 4.13. Revised Vertical AD vs MW data and regression results. For comparison are the initial AD
regression line (purple dotted) and the scaling-based D-bar line (gray dashed).

The filetered dataset of 29 “complete” earthquakes with AD and MD were used to re-evaluate
the MD/AD values. The updated median and 10™ percentile values of MD/AD are unchanged
(2.3 and 1.7, respectively), although the 90" percentile value increased from 3.7 to 3.9. Applying
the same threshold criteria for a “complete” vs “incomplete” MD rupture using the same
threshold criteria (-1 s AD and MD/AD = 1.7) using the revised AD regression identifies three
additional events with MD values defined as “incomplete”: The 1998 Iwate (Inland), Japan, the
1929 Baghan, Iran, and the 2002 Avaj, Iran earthquakes. The final MD dataset of complete
ruptures therefore has N =42 events, with N = 18 events classified as “incomplete”. Although
the Iwate and Avaj earthquakes include estimates of AD, we decided to not perform another
iteration of the logioAD - Mw regression with these additional events removed.

Table 4.3 lists the events in order of the ratio between the MD value and the -1s AD value
predicted based on the final log10AD - Mw regression. The MD/AD(-1s) threshold of 1.7 is
indicated by the thick line and rows with text noting the change from “complete” to
“incomplete” ruptures.
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Table 4.3. Earthquakes in the database in order from highest to lowest ratio between
measured MD and predicted AD (-1s).

Number Date Event Location Mw AD, MD, EiSte, LA [ 5
m m AD,-1s
48 9/21/1999 Chi-Chi Taiwan 7.62 2.6 9.8 6.73
58 11/13/2016 Kaikoura New Zealand 7.8 2.2 10.3 5.96
55 10/15/2013 Bohol Philippines 7.1 1.4 5.2 5.90
43 12/25/1989 Ungava Canada 6.0 0.80 1.8 5.84
51 10/8/2005 Kashmir Pakistan 7.6 15 7.1 4.94
59 11/8/2018 Lake Muir Australia 53 0.28 0.75 4.76
32 10/10/1980 El Asnam Algeria 7.3 1.8 5.0 4.67
37 3/30/1986 Marryat Creek Australia 5.7 0.34 1.1 4.63
45 8/19/1992 Suusamyr Kyrgyzstan 7.2 4.2 4.32
5 1/3/1911 Chon Kemin Kyrgyzstan 8.02 3.5 9.0 4.22
31 6/2/1979 Cadoux Australia 6.1 0.4 1.4 413
15 1/13/1945 Mikawa-Fukozu Japan 6.7 1.2 2.4 4.01
2 08/31/1896 Rikuu Japan 7.2 2.1 3.6 3.70
35 6/11/1983 Coa"”fg;j;t:fh“k California, USA | 5.4 0.64 3.69
22 10/14/1968 Meckering Australia 6.59 0.96 2.0 3.69
9 5/6/1930 Salmas Iran 7.6 5.0 3.50
54 3/23/2012 Pukatja Australia 5.18 0.15 0.48 3.41
52 10/10/2007 Katanning Australia 4.7 0.17 0.30 3.38
40 1/22/1988 Tennant Creek (LSE) Australia 6.58 0.61 1.8 3.35
53 5/12/2008 Wenchuan China 7.9 2.2 6.0 3.15
56 11/22/2014 Nagano Japan 6.2 0.48 1.2 3.08
13 4/21/1935 Tuntzhuchio Taiwan 7.23 3.0 3.00
57 5/20/2016 Petermann Australia 6.0 0.25 0.90 2.92
8 6/17/1929 White Creek New Zealand 7.89 5.2 2.76
25 3/10/1970 Calingiri Australia 5.03 0.18 0.33 2.71
16 3/17/1947 Dari China 7.89 5.0 2.65
18 2/12/1953 Torud Iran 6.6 1.4 2.56
30 9/16/1978 Tabas Iran 7.4 1.5 3.0 2.55
3 12/23/1906 Manas China 7.95 5.0 2.50
4 1/23/1909 Silakhar Iran 7.23 2.5 2.50
41 12/7/1988 Spitak Armenia 6.77 0.90 1.6 2.48
12 11/28/1933 Behabad Iran 6.29 1.0 2.46
10 2/2/1931 Hawkes Bay New Zealand 7.89 4.6 2.44
39 1/22/1988 Te"”(aL;‘\tNC)reEk Australia 644 | 058 | 1.1 2.40
11 12/25/1932 Changma China 7.82 2.0 4.0 2.27
38 1/22/1988 T(EE::;‘E:;EE;‘ Australia 6.27 | 039 | 0.90 2.25
36 8/23/1985 Wugqai China 6.89 1.6 2.21
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Number Date Event Location Mw A2 w127 i, Alb  fresiizd
m m AD,-1s
50 2/22/2005 Zarand Iran 6.4 1.0 2.21
24 10/1/1969 Pariahuanca Peru 6.6 1.2 2.19
46 9/29/1993 Killari-Latur India 6.2 0.49 0.80 2.14
1 05/08/1847 Zenkoji Japan 7.4 2.4 2.04
26 2/9/1971 San Fernando California, USA 6.61 0.47 1.0 1.81
Complete ruptures (above)
Incomplete ruptures (below)
49 6/22/2002 Avaj Iran 6.5 0.70 0.80 1.61
7 5/1/1929 Baghan Iran 7.51 2.1 1.60
47 9/3/1998 Iwate (Inland) Japan 5.8 0.22 0.38 1.49
19 12/13/1957 Farsinaj Iran 6.91 1.0 1.36
6 4/18/1911 Raver Iran 6.29 0.50 1.23
23 7/24/1969 Pariahuanca Peru 6.1 0.40 1.18
28 9/6/1975 Lice Turkey 6.6 0.50 0.60 1.10
17 7/21/1952 Kern County California, USA 7.36 0.42 1.2 1.08
60 11/11/2019 Le Teil France 49 0.05 0.11 1.02
29 1/1/1977 Mangya China 6.1 0.30 0.88
44 6/20/1990 Rudbar-Tarom Iran 7.4 1.0 0.85
20 9/1/1962 Ipak Iran 7.42 0.80 0.67
21 5/24/1968 Inangahua New Zealand 7.1 0.52 0.59
34 7/27/1981 Sirch Iran 7.1 0.50 0.57
14 1/15/1944 San Juan Argentina 7.6 0.60 0.42
42 10/29/1989 Chenoua Algeria 6.0 0.12 0.39
33 6/11/1981 Golbaf Iran 6.6 0.11 0.20
27 4/10/1972 Qir Iran 6.8 0.10 0.15

4.2.5 MD VS MAGNITUDE SCALING

A plot of the MD data with three sets of linear regression lines is in Figure 4.14. Ruptures
interpreted as complete are shown in solid circles; incomplete ruptures are open circles. A least-
squares linear regression of logioMD — Mw based on the N =42 complete ruptures yields
intercept, slope, and regression standard error values of a = —2.50,b = 0.415,s = 0.15. This
regression has an R? = 0.87. The median MD line is shown in Figure 4-10 as a solid line, with
the = 1 s values shown as dotted lines. A least-squares linear regression using the N = 18
incomplete ruptures yields values of a = —2.71, b = 0.354,s = 0.30, with an R> = 0.42.
Although this R? value is low, we consider this relation to be useful to represent epistemic
uncertainty for surface displacement hazard for some reverse faults, particularly in cases where
distributed surface folding is more expected. If the incomplete rupture regression parameters are
used, we recommend that practitioners account for the “remaining” deformation, at least
qualitatively (e.g., expected distributed deformation over a hanging-wall fold). Also, a least-
squares linear regression for the entire 60 events with estimated MD yields values of a =
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—2.73,b = 0.422,s = 0.35, with an R? of 0.50. Whereas we present these results for
completeness, our guidance would be to not use this in a logic tree, but rather consider weighted
combinations of the complete and incomplete models.
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Figure 4.14. Vertical MD vs MW showing final interpretation of complete ruptures (solid circles; N = 42)
and incomplete ruptures (open circles; N = 18). Least-squares linear regression lines for complete
ruptures shown in dark gray (solid for median; dotted for + 1s). Least-squares linear regression lines for
incomplete ruptures shown in gold (solid for median; dotted for + 1s). The median least-squares linear
regression line fit to the whole MD dataset shown in green dash-dot-dot pattern.

Table 4.4 summarizes the recommended regression parameters for reverse and reverse-oblique
earthquakes based on our evaluation. Note we provide precise results for the regression a, b, and
s parameters, and also provide recommended values that include rounding and increases in s. The
increases in s in particular are important to consider as displacement-magnitude regressions have
been shown to be highly dependent on the dataset (e.g., Wells and Coppersmith, 1994; Moss and
Ross, 2011; Wesnousky, 2008) and it is desirable that uncertainties applied to these models
capture changes to regressions based on future events. Further reduction of uncertainties in the
future can be based on larger and/or better filtered datasets. We note the values of s calculated
from earlier studies (e.g., Wells and Coppersmith, 1994) were on the order of 0.3 to 0.4 and this
analysis suggests they have been appropriately reduced based on additional data.
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Table 4.4. Recommended parameter values for log-linear relations between vertical AD
or vertical MD and moment magnitude for reverse and reverse-oblique
surface-fault ruptures. Regression parameters and R? values at higher decimal
places shown in parentheses. Parameters are for the form logio(D) = a + bm,
with standard error of the regression s.

AD or S
2 )
Name MD a b S R recommended Notes
Empirical AD, Recommend for estimating
complete AD -2.87 0.416 0.133 0.89 0.2 AD assuming complete
only (n=29) ruptures
Empirical AD, Alternative AD regression
all data AD -2.98 0.427 0.181 0.83 0.25 parameters to consider;
(n=32) captures all reverse ruptures
et s
complete MD 250 | 0415 0.148 0.87 0.2 & Compr
ruptures; epistemic
only (n=42) .
alternative
et s
incomplete MD 271 | 0354 0.305 0.42 035 g Incomp
ruptures; epistemic
only (n=18) .
alternative
Empirical MD, Provided for completeness;
all data MD -2.73 0.422 0.354 0.50 n/a do not recommend use for
(n=60) hazard.

4.2.6 DISCUSSION

The updated database of reverse and reverse-oblique surface-fault ruptures represents a
significant improvement in data quality and completeness over previous compilations largely
thanks to the SURE 1.0 and FDHI database efforts. The methodology used here to filter the data
and classify events as “complete” or “incomplete” is one of many potential approaches to apply
for developing useful models for displacement hazard. Other potential methodological choices,
such as employing alternative methods for estimating AD from the rupture dataset, using
orthogonal regression, or regressing displacements against surface rupture length, may be
applied as well to yield epistemic alternative equations useful for hazard assessment. The choices
we have made largely reflect our preference for simple models that build directly on previous
efforts. In this regard, Figure 4.15 shows plots comparing median models of AD vs Mw (panel a)
and MD vs Mw (panel b) developed from this study to other models compiled from the literature.
All can be expressed in the form provided in equation (4.2), and the a, b, and s regression
parameters are listed in Table 4.5. Interestingly, the result of this analysis for vertical AD
(median model) is very similar to the empirical logioAD — Mw regression parameters determined
by Hecker et al. (2013) based on data from all rupture types compiled by Wesnousky (2008).
Also of note are the steep slopes of the Wells and Coppersmith (1994) empirical displacement
relations (based on all slip types; 0.69 for AD and 0.82 for MD) compared to the other empirical
relations (0.32 to 0.51).
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Figure 4.15. Comparison of empirical log-linear relations between AD (panel a) or MD (panel b) and
moment magnitude applicable to reverse or reverse-oblique faulting.
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Table 4.5. AD and MD Regression Parameters for the form LogioD = a + bM + s¢

Model, R and RO data AD 2

unless specified or “ b > N R
MD

Theoretical (this study) AD | -3.43 0.5 n/a n/a n/a

Complete ruptures (this | xpy | 87 | 0416 | 0133 | 290 | 089

study)

All ruptures (this study) | AD | -2.98 0.427 0.181 32 0.83

MR11 AD 92192 0.3244 0.17 0.62

WC94, R data only AD | -0.74 0.08 0.38 15 0.01

WC94, All slip types AD | -4.80 0.69 0.36 56 0.56

HEA13, All slip types AD | -2.79 0.41 0.33 W08 n/a

Complete ruptures (this |\ 5\ 550 | 0415 | 0148 | 42 | 087

study)

Incomplete ruptures (this | \ /5 | 571 | 0354 | 0305 18 | 042
study)

All ruptures (this study) | MD | -2.73 | 0422 | 0354 60 | 0.50
MRI11 MD | o | 05102 | 031 55 | 053
WC94, R data only MD | -1.84 | 029 0.42 21 0.13
WC94, All slip types MD | -5.46 | 082 0.42 56 | 061

Note: MR11 = Moss and Ross (2011); WC94 = Wells and Coppersmith (1994); HEA13 = Hecker et al.
(2013); W08 = Wesnousky (2008). The WC94 Reverse (R) data only regression parameters were
interpreted to be not significant and are shown in italics.

The implementation of alternative AD or MD models in hazard should be guided by project
objectives, design criteria, available information about the fault posing the hazard, and the
approach to risk and engineering decision making adopted by the project owner and/or other
stakeholders. The filtered models we developed for complete ruptures are intended to better
represent cases for surface-fault rupture from faults with a clear, repeated history of surface
faulting. Although the median displacement for the “complete” rupture case is higher than for the
“all” data regression (Figure 4.10), the lower standard error of the complete rupture regression
results in lower displacement estimates at the 84" and higher percentiles compared to the “all”
data regression. Because a lot of the higher standard error in the “all” data regression is due to
lower displacement events (those we interpret as incomplete), the consequence to hazard is
unrealistically high displacement values at higher statistical percentiles that are often considered
in hazard studies.

With regards to incorporating the possibility for an incomplete rupture in a hazard analysis, this
decision should be based on an assessment of the fault in question and the project parameters. If
additional conservatism is desired and/or a geologic assessment of the subject fault suggests it is
likely to generate complete ruptures, then the complete rupture regression may be given full
weight in a hazard analysis. If, on the other hand, a mean-centered hazard is desired, and/or there

40



is no compelling case for asserting a fault will not produce an “incomplete” rupture, then
capturing epistemic uncertainty by weighting complete and incomplete rupture regression
parameters is warranted. As a starting point for assigning weights, we suggest utilizing the ratio
of complete to incomplete ruptures in the dataset as a proxy for the site-specific probability of a
particular fault generating a complete vs incomplete rupture. In this case, the complete rupture
regression would receive a weight of (*40 =) 0.7 and the incomplete rupture regression would
receive a weight of (%0 =) 0.3. Separating the ruptures into epistemic alternatives for complete
vs incomplete ruptures has the advantage over the “all” regression parameters of capturing the
observed rupture behavior of the empirical dataset, while not penalizing the model with an
overly high standard error that would result in unrealistically high average or maximum
displacements at high probability levels.
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5 Probability of Distributed Displacement

Distributed displacements often require more effort to document in the field than primary
displacements. And different mechanisms other than secondary displacement can contribute to
the observations. In this study we look at two different databases to evaluate the probability of
distributed displacement for reverse events: FDHI and SURE. To provide some basis for the
observed results, an analytical solution was developed as a function of rupture mechanism.

5.1 ANALYTICAL ESTIMATES

An attempt was made to provide an analytical basis for the distance of displacements that can be
observed. The assumptions are:

o Particulate mechanics controls the physics of surface-fault rupture,

o Local stress fields are the same as regional stress fields,

o The example, which is derived for a dip of 60 degrees and a friction angle of 30 degrees,

is reasonably representative.

We are only focusing on the physics of particulate mechanics and ignoring tectonic or structure
controlled surface displacements for this example. The boundary that is often used to
differentiate between rock and soil at the ground surface is 1500 m/s shear-wave velocity, which
often indicates the limit of material that is “rippable” with heavy equipment. Material with a
velocity less than this often behaves like a particulate; material with a shear-wave velocity
greater than 1500 m/s often behaves like a solid.

The stress conditions that result in the distributed displacements propagating in a particulate
material are different dependent upon if the stress regime is compressional or extensional. Using
a linear failure criteria like Mohr-Coulomb, we can map the stresses into Mohr space (normal
stress and shear stress) and visualize the initial stress conditions and failure stress conditions that
result in particle dislocation, rupture propagation, and displacement that occurs away from fault
strike. This particle dislocation produces planes of weakness that coalesce into a wedge type
failure commonly evaluated in near surface conditions for civil works and construction purposes
(Terzaghi, 1943) but used here to better understand propagation of distributed fault rupture
deformations.
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Foot Wall — -« Hanging Wall

Figure 5.1. For dip-slip earthquakes we evaluate the stress conditions along primary fault rupture with
respect to the hanging wall and footwall.

5.1.1 REVERSE MECHANISM

For reverse events the stress field is compressional. The compression will result in horizontal
stresses exceeding vertical stress to the point where the stress circle touches the failure envelope
defined by the friction angle. The failure plane is then equal to 45 minus half the friction angle

as found by geometry.

T shear stress ¢ =30
6 =45 —%
o o, o normal stress
/’
Initial stress conditions Final stress conditions where  The angle of the failure plane
where the horizontal stress compression increases the by geometry is the 45 minus
is roughly half (K,) of the horizontal stress to the point half the friction angle
vertical stress. of failure (Kp)

Figure 5.2. Mohr-Coulomb plot of the stress conditions that results in particulate failure when subjected
to a compressional stress field.
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The distance from strike (r) that the failure plane propagates is then a function of depth (z) of a
failure wedge of a particulate material undergoing compression (Figure 5.3). Using a dip angle
of 60 degrees we find that that distance can be defined geometrically as:

z csc(60)

- m (5.1)

For a friction angle of 30 degrees, the distance » = 2.31z or greater than two times the depth of
the failure wedge. Equation (5.1) indicates that as the friction angle increases that the distance
from strike increases for distributed displacements. As the dip angle decreases the distance
increases. If we assume a sediment depth of 1 km (using a threshold of 1500 m/s) then the
distance we would expect displacements to propagate from strike would be roughly 2.3 km. But
on average material would get stronger with depth due to higher stress conditions and/or higher
friction angles so we would expect displacements further than this.

A
A 4

N
z \
\ -

Ay
60°

Figure 5.3. Passive wedge geometry in a compressional stress field.
When solving for the force required (Fig 5.4) to mobilize the wedge of soil (typically called a
passive wedge) we find that:

Opf 1+sing
o, 1-—sing

tan? (45 + 9) (5.2)

P, = =K,yz* where K, = >

2
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Figure 5.4. Solving for the force P, required to mobilize the passive wedge to failure.

A linear failure surface from the Mohr-Coulomb assumption as we have used here, or a more
realistic log-spiral failure surface (Carquot and Kerisel, 1948) can be used to model the
propagation of distributed displacement. The log-spiral failure surface would result in slightly
less distance from strike (r) than the linear failure assumption.

5.1.2 NORMAL MECHANISM

In normal earthquakes, where the stress field is extensional in nature, we see a different
progression towards distributed displacements. Here the horizontal stress will decrease to the
point where the stress circle touches the failure envelope resulting in a failure plane of 45 plus
half the friction angle. The change from compressional to extensional in this problem only
changes the sign in the denominator of Equation 5.1 from minus to plus:

z csc(60)

T sin (45 + %)

(5.3)

Given a 30 degree friction angle and 60 degree dip, the distance » = 1.33z. For normal events, an
increase in friction angle results in a decrease in the distance from strike we would expect to see
distributed displacements. As in the reverse faulting mechanism case, a decrease in the dip angle
results in an increase in distance. And with material strengthening with depth we would expect
to see smaller distances from strike.
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Figure 5.5. Mohr-Coulomb plot of the stress conditions that results in particulate failure when subjected

to an extensional stress field.
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Figure 5.6. Active wedge geometry in an extensional stress field.
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The wedge failure is now what is typically called and active wedge. The force required to
mobilize the active wedge is:

¢

0 1—sin
P, = =K,yz?> where K, = M o= ¢ _ tan? (45 — —) (5.4)

2 0, 1+4sing 2

If we plug in some reasonable numbers and leave z as unknown, we find that there is roughly an
order of magnitude more force required to mobilize the compressional (passive) failure versus
the extensional (active) failure. If we relate proportionally the seismic moment (M,) to the force
required (P) then if a normal (extensional) event displays distributed displacements for a My, 6
(M,~10'> MN*m), a reverse (compressional) event would take just under a My, 7 (Mo~ 1013
MN*m) to display the same distributed displacements.

5.1.3 STRIKE SLIP MECHANISM

Finally with strike slip events we tend to have near vertical fault planes. The stress conditions
are quite different for strike-slip earthquakes in that only shear is being added and particulate
will fail in a simple shear manner. The stress conditions are such that the horizontal and vertical
stresses remain unchanged but shear stress is added until the failure envelope is reached.

T shear stress ¢ =30

Final stress conditions where

shear stress is added to the

, system to the point of failure.
I . / " Nochange in the normal

Trf I \ stresses occurs.

—g normal stress

1

Initial stress conditions This is called a simple shear failure conditions
where the horizontal stress and the angle of the failure planes (8) will be

is roughly half (K,) of the slightly higher than the friction angle (Holtz et al.
vertical stress. 2011)

Figure 5.7. Mohr-Coulomb plot of the stress conditions that results in particulate failure when subjected
to a pure shear stress field.
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This type of failure mechanisms does not inherently result in distributed displacements, and it is
thought that off-strike displacements are due to oblique stresses, asperities and bends in the fault,
strain hardening behavior of the particulate forcing strains to migrate off the plane, or other
mechanisms.

5.1.4 ANALYTICAL SUMMARY

In summary, a simple analytical approach considering particulate physics was used to compare
how the distance of distributed displacement from strike can be considered a function of the fault
rupture stress conditions and the fault rupture mechanism.

e The particulate mechanics indicate that reverse events will tend to propagate
displacements 1.7 times greater than normal events for a friction angle of 30 degrees;
friction angles of 20 and 40 degrees would suggest reverse:normal ratios of secondary
displacement widths of about 1.4 to 2.1, with all else being equal.

e A decreasing dip angle will tend to propagate displacements further from strike for both
normal and reverse.

e (Changing material properties, i.e., friction angle, has the opposing effects depending on if
the mechanism was reverse or normal.

e The force required to mobilize reverse failure wedges is an order of magnitude greater
than the force required for normal failure wedges, which is roughly equal to 1 unit of
moment magnitude. This translates to a significantly higher likelihood of observing
normal fault distributed displacements than reverse all things being equal, which will be
shown to be verified in the data.

e Strike-slip events are simple shear in nature and distributed displacements are likely a
function of conditions that cause a deviation from that such as fault bends, fault steps,
fault asperities, strain hardening material behavior, or other.

Some additional thoughts on the analytical exploration of distributed displacements:

o The dip angle of primary displacement in a particulate material will be controlled by the
same physics which would lead to normal faults being steeper (45 plus half the friction
angle) than reverse faults (45 minus half the friction angle) if all else is held equal.

o Some dip-slip fault planes have started out in a compressional stress field and evolved or
transitioned to an extensional stress field. An example of this would be overthrust faults
in the Montana Rockies that were once compressional and have transitioned in the
current geologic era to extensional. Transitioning from compressional to extensional
would result in a shallower predefined dip angle than would likely happen otherwise.
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This would result in distributed displacements further away from strike than if it were not
the case.

o Geologic structure in solid material will follow different physics such as a non-linear
failure envelope like Hooke-Brown. This will result in steeper dip angles when rupturing
through intact rock and steeper distributed displacement angles as well. However
existing structure and existing fault planes will provide weaknesses and conduits for
displacement that control the location and angle for primary and distributed
displacements. The strain will find the easiest path to work its way to the ground surface.

5.2 STATISTICAL RESULTS

In prior studies of normal (Youngs et al., 2003) and strike slip (Petersen et al., 2011) earthquake
displacement datasets, the approach to modeling the probability of distributed displacements was
two-fold. The first step was to grid the fault region (e.g., 500 m grid squares), class the gridded
data into yes or no observations, and then fit a logistic regression to this class data. The second
step was to then to evaluate the amplitude of distributed displacements with distance from strike.

Here we are taking a slightly different approach. We evaluate distributed displacements in three
steps;
1) The probability of nonzero displacement, P(d>0) using a 500m grid squares to observe
the occurrence of distributed traces.
2) The frequency of displacements as a function of distance from primary fault strike,
P(d>0).
3) The amplitude of distributed displacements with respect to maximum and average
displacement, d/MD and d/AD.

Where applicable we have compared the FDHI data with the SURE 2.0 to provide confidence in
the results. We evaluated the distributed data from several perspectives to determine if there was
any dependence on magnitude, surface rupture length, or location along fault. Below in figure
5.8 is a plot of displacement as a function of x/L, and no relationship can be observed.
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Figure 5.8. Plot of r versus x/L for all R/RO events in the FDHI database. The obvious string of data from
x/L of 0.37 to 0.40 is from the Kaikoura event.

5.2.1 PROBABILTY OF NONZERO DISTRIBUTED DISPLACEMENT

To determine the probability of nonzero distributed displacement, P(d>0), all the reverse (RV)
and reverse-oblique (RV-OBL) events from the FDHI database were used. A list of the 25
events found in the FDHI database is provided below. For validation this data was compared at
times to the SURE 2.0 database.

Table 5.1. List of FDHI events used in this analysis.

CoNOORrWN =

Event Name
Wenchuan China
ChiChi Taiwan

Nagano Japan

Kashmir Pakistan
Kaikoura New Zealand
San Fernando California
Bohol Philippines

Kern California
Petermann Australia

. El Asnam Algeria
. Cadoux Australia
. Calingiri Australia
. Marryat Creek Australia

Event Date

5/12/2008
9/20/1999
11/22/2014
10/8/2005
11/13/2016
2/9/1971
10/15/2013
7/21/1952
5/20/2016
10/10/1980
6/2/1979
3/10/1970
3/30/1986

50

Mechanism Mw
RV-OBL 7.9

RV-OBL 7.62
RV 6.2
RV 7.6
RV-OBL 7.8
RV 6.61
RV 7.1
RV 7.36
RV 6.0
RV 7.3
RV 6.1
RV 5.03
RV 5.7

SRL (km)
240
72
8.5
70
200
19
50
32
16
36
14
3.25
13



14. Meckering Australia

15. Pukatja Australia

16. TennantCreek1 Australia
17. TennantCreek2 Australia
18. TennantCreek3 Australia
19. Rikuu Japan

20. Mikawa Japan

21. lwatelnland Japan

22. ChonKemin Kyrgyzstan
23. LeTeil France

24. Spitak Armenia

25. Killari India

10/14/196
3/23/2012
1/22/1988
1/22/1988
1/22/1988
8/31/1896
1/12/1945
9/3/1998

1/3/1911

11/11/201
12/7/1988
9/29/1993

8

9

RV
RV
RV
RV
RV
RV
RV
RV
RV
RV

RV-OBL

RV

6.59 37
518 1.25
6.27 15
6.44 8
6.58 8.25
6.7 40
66 7
5.8 1.2
8.02 177
49 5
6.77 7.5
6.2 0.25

A gridding approach was taken to evaluate the frequency of distributed displacements (d) in the
hanging wall (HW) and footwall (FW). Each event was plotted using the coordinate system
provided with the data and then a 500m by 500m cell grid was overlayed. The occurrence of
distributed displacement traces were then marked if they fell within a 500m cell and the sum of
these were then divided by the total number of cells at that grid spacing or distance (r) from the
principle fault. Figure 5.9 shows and example of this approach for the San Fernando event. The
red lines show principal traces, blue lines distributed traces, green circles the cell where HW
traces were observed, and red x’s where FW traces were observed. Appendix B shows each
FDHI event with the grid and observed traces. This gridding approach was found to be more
defensible compared to the 500m slice approach that was used in the first round of this research.
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Figure 5.9. Gridded fault rupture (500m x 500m) showing principal and distributed surface fault rupture

traces. The red lines show principal, blue lines distributed on the hanging wall, and green lines

distributed on the footwall. Marked grid blocks were those counted toward occurrence.

The plotted data and the upper range as defined by the 95" percentile shown in figures 5.10 and
5.12. For the hanging wall (HW) side the following plots show for the entire data range, the 3
km range, and for additional percentiles of 85" and 50" percentile. Some observations; the
FDHI and SURE2.0 databases are in good agreement providing confidence in the probability
values, the 50" percentile drops off to zero around 1km distance, and that distributed
displacements have been observed out to 22.5 km in some situations.
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Figure 5.10. Distance versus probability of distributed surface fault rupture for hanging wall.
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Figure 5.11. Distance versus probability of distributed surface fault rupture for hanging wall.
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Figure 5.12. Distance versus probability of distributed surface fault rupture for hanging wall.

Examining further the data has been parsed by specific events to see if any one event or region is
dominating the percentiles. Figure 5.13 shows event by event how the HW side is influenced by
specific events compared to the 95" percentile. As can be seen the San Fernando event drives
the upper bound across most of the range, with the small Killary and Pukatja events controlling
the upper bound at 0.5 km distance. The latter two events are small magnitude small surface
rupture events where the interpretation of primary versus secondary can be subjective and most
of the displacements fall within one or two 500 m cells (see gridded events in the Appendix B).
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Figure 3.13. Examining occurrence of distributed surface fault rupture by event for hanging wall.

On the footwall (FW) side the same plots are shown (Figures 5.14 through 5.16). Some
observations of the FW data; the FDHI and SURE2.0 data differ some in the 95™ percentiles, the
50 percentile goes to zero at 1 km similar to HW, and distributed displacements have been
observed out to 11km. The two small events of Killary and Pukatja again strongly influence the
frequency at 0.5km, and Cadoux and TennentCreek?2 events influence the upper bound across the
0.5 to 1.5km range. The difference between SURE2.0 and FDHI data has to do with how each
database assigns hanging and foot wall designation with respect to principal fault designation.

54



100%

90%
o FW FDHI data

0,
80% ——FW 95th FDHI 500m cells
70% eesssFW95th SURE 2.0
60%

50%

P(d>0)

40%

30%

20%

anco

10%

LI
..-."'6----'030""%"""1 -----------------

15 2 2.5 3

Distance r (km)

0% 0

Figure 5.14. Distance versus probability of distributed surface fault rupture for footwall.
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Figure 5.15. Distance versus probability of distributed surface fault rupture for footwall.
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Figure 5.16. Distance versus probability of distributed surface fault rupture for footwall.
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Figure 5.17. Examining occurrence of distributed surface fault rupture by event for footwall.
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Tabular values of the percentiles are provided to allow users to define the threshold they are
comfortable using in forward analysis. Although the 95™ percentile goes to zero at specific
distances, some projects may warrant using a nonzero value to account for complex faulting
situations that can produce distributed displacements at long distance from principal faulting.

Table 5.2: Percentiles for Hanging Wall (HW) left, and Footwall (FW) right.

r{km) 95th 85th 50th

r 95th 85th S0th
05] 034286  0.60156 0.0964 05| 075428 0.4397 0.0833
1 02823 01526 o 1| 01898 013714 0
15| 0116 007708 0 1.5 009268 003948 0
2 00813  0.01184 0 2| 006882 002448 0
25| 00718  0.02698 0 25 001016  0.0025 0
3| 005322 0.01694 0 3 ommse 0 0
35 0.0272 0 0 3.5 0.01272 ) 0
1 0.0309 o0 0 L 0.00512 o 0
as| o068 o 0 45  0.00256 0 0
5 0.0552 o o 5 o o o
55 0.0309 0 0 5.5 o o o
6| 0023382 0 0 5: g g g
65| 00145 0 0 ; o o o
7 0.0216 0 0 75 o o o
75| 001272 0 0 a o o o
8| 000512 0 0 as ° o o
85 00025 0 0 9 o o 0
9 0.0048 0 0 a5 P o 0
95 0 0 0 10 0 0 0
10 0 0 0 10.5 0 0 0

105 0 0 0 1 0 0 0
1 0 0 0
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12 0 0 0

125 0 0 0

13 0 0 0

135 0 0 0

1 0 0 0
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15 0 0 0

155 0 0 0

16 0 0 0

165 0 0 0
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175 0 0 0

18 0 0 0

185 0 0 0

19 0 0 0

195 0 0 0

20 0 0 0

205 0 0 0

21 0 0 0

215 0 0 0

22 0 0 0

225 0 0 0
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Exponential curves were fit the 85 percentiles for ease of coding. The curves follow the
function form below where 7 is the distance in km from the principal fault, a and b are
coefficients as a function of hanging wall or footwall, and the probability value is capped at 1.0.

P(d>0)=exp(—a*r+b)<1.0 (5.5)

Table 5.3. Coefficients for 85" percentile function for P(d>0).

coefficients Hanging Wall Footwall
a 2.2 24
b 0.5 0.4

If we examine this data for magnitude or surface rupture length dependence, we first look at the
relationship between magnitude and surface rupture length for these 25 R/RO events. The best
fit to the data in semi-log space compares to prior relationships such as Wells and Coppersmith
(1994).

1000
= 0.001e1.4595x O
Y 2 _ © O
R*=0.8434
100 e
L@
e© o
E o Oo O
= 10 o 5
w O
Q©
1 © °
O
0.1
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5
Magnitude

Figure 5.18. Magnitude versus Surface Rupture Length (SRL) in km for the data used in this analysis.

The following plots show the data binnned by magnitude ranges of; 8.0 to 7.5, 7.5 to 7.0, 7.0 to
6.5, 6.5 t0 6.0, and 6.0 to 4.9. This binning provided a relatively even distribution of the number
of events for each bin and coincides with magnitude ranges that are commonly used in
engineering practice. Figure 5.19 shows the data out to the distance extents represented in the
FDHI data. No clear trends are observed other than San Fernando dominating the M 6.5 to 6.0
range. Figure 5.20 focuses on the 0 to 3km range and shows the data as well as median trends
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for each magnitude bin. Here the median trends show that for this R/RO data that magnitude less
than 6.5 tend to dominate the 0.5 km range, which are also on the higher end for the 1.0 km
range. This would suggest that the smaller magnitude reverse events have a higher likelihood of
producing distributed displacements at these distances than the larger magnitude events.
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Figure 5.19. Distance versus distributed surface fault rupture binned by magnitude, hanging wall.
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Figure 5.20. Distance versus distributed surface fault rupture binned by magnitude, hanging wall.
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The same process was performed for the footwall data. Figures 5.21 shows to the data extent
and Figure 5.22 shows out to 3 km with median values. The trend is not as strong as with the
hanging wall data.
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Figure 5.21. Distance versus distributed surface fault rupture binned by magnitude, footwall.
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Figure 5.22. Distance versus distributed surface fault rupture binned by magnitude, footwall.
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If we inspect the data from a surface rupture length (SRL) perspective, we would expect similar
trends because of the correlation between magnitude and SRL. The bins did not necessarily
align with the magnitude bins as there is not a 1:1 correlation. Here the bins of > 100 km, 100 to
50, 50 to 25, 25 to 10, 10 to 5, and < 5 km were used as that gave an even distribution of events
per bin. We see on the hanging wall side (Figure 5.23) that the bin of 25 to 10 km tends to
dominate, however that is due to the San Fernando and Cadoux events falling into this bin. The
same is true for the footwall side (Figure 5.24).
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Figure 5.23. Distance versus distributed surface fault rupture binned by surface rupture length,
hanging wall.
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Figure 5.24. Distance versus distributed surface fault rupture binned by surface rupture length,
footwall.
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Summary of P(d>0) Assessment

The probability of distributed rupture has been examined here for R/RO events. A gridded
approach was used (e.g., Petersen et al, 2011). The occurrences of distributed rupture traces
were counted within each 500 x 500 m grid cell, and divided by the total number of cells at that
specific grid distance from the principal fault trace. Both the FDHI and SURE 2.0 databases
were evaluated in this way and reasonable agreement between the two databases was observed in
the percentile curves. In general, there is an exponential decay of the probability of distributed
deformations away from principal fault trace. Percentiles were calculated and tabulated, and
curves were fit to the 85 percentiles for PFDHA coding purposes.

The dependence of this decay was examined per each event, as well as a function of magnitude
and surface rupture length. It was found that some events have produced widespread distributed
deformations whereas others very limited distributed deformations. For example, the San
Fernando event produced many distributed deformation traces out to distances greater than 3 km
which was atypical of other events in the database.

There was some magnitude dependence observed in the hanging wall data, where smaller event
less than M 6.5 tended to produce a higher likelihood of distributed rupture out to 1 km when
compared to larger magnitude events. The dependence on surface rupture length was not as
prominent and tended to be controlled by atypical events such as San Fernando.

Distributed deformations were documented out to 22.5 km on the hanging wall and 11 km in the
footwall, but these are associated with complex faulting conditions (e.g., conjugate or
sympathetic faults) and should be considered when evaluating similar tectonic setting. The 95
percentiles tended towards zero at these large distances because the occurrences were an
exception. When working in complex faulting settings it is advised to set the probability to some
non-zero value to account for the potential of these rare but not unobserved distributed
deformations.

As in most statistical analysis in the geohazard realm, more data is always warranted. We have
only 25 events to inform our inferences which is not enough. The median trends are expected to
hold true as more data is collected whereas the standard deviation may diminish with more
observations.
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5.2.2 FREQUENCY OF DISTRIBUTED DEFORMATIONS

The frequency distribution of the data was plotted both in aggregate form and as a function of
magnitude bins. Fitting a function to the cumulative frequency data will produce a cumulative
distribution function (CDF) that can enable the forecasting of the probability of exceedance.

A key observation of the frequency distribution of the data (e.g., Figure 5.25) is that there is an
exponentially decreasing portion that is within the initial few kilometers, followed by a random
portion that can reach tens of kilometers from strike. The exponential portion agrees with the
analytical solution, whereas the random portion can be seen in other prior studies such as Youngs
et al. (2003). After examining the events that contribute to the random portion of the distributed
displacements (Wenchuan, Kaikoura, and Rikuu) it was found that these far displacements can
be attributed sympathetic and/or conjugate faults and therefore are controlled by a different
process than displacement on a single “simple” fault.

To aid in forward modeling of this we have separated the data and provided distributions that fit
both;
a) A single fault trace where the mechanics of distributed displacements can be

conceptualized similar to the analytical solution presented above, or
b) A complex fault system where distributed displacements may occur at distance due to
sympathetic release on adjacent or nearby faults.

The hanging and foot wall plots below show all the data with the exponential and random
displacements as well as the exponential displacements only.
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Figure 5.25. FDHI Reverse HW All Data Frequency Plot.
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Figure 5.26. FDHI Reverse HW Exponential Data Frequency Plot.
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Figure 5.28. FDHI Reverse FW Exponential Data Frequency Plot.
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To account for magnitude dependence, the data is binned by magnitude and the frequency
distributions are plotted. We have fit curves to the cumulative distributions to provide CDF’s for
evaluating the probability of exceedance. Here we are accounting for magnitude dependence as
well as tectonic dependence by separating out the exponential versus the random portions of
displacements. Curve fitting was accomplished using the cftool in Matlab. A 2™ order
exponential provided efficient fitting to the cumulative distributions and provide CDF’s for
forecasting the probability of exceedance. Below are the equations, table, and frequency plots of
the hanging wall reverse FDHI data.

P(d>d,)=1—-F(x) < 1.0 (5.6)

F(x) = aexp(b x) + cexp(d x) (5.7)

Table 5.4. Coefficients for Equation 5.6 for Reverse Mechanism Hanging Wall Distributed
Deformations from FDHI data.

a b c d R?: RMSE
HW (7 to 7.9)+ | 0.6998 2.75%107 -0.6931 -0.001219 0.9882 : 0.02474
HW (7 t0 7.9) 0.8289 5.682%107 -0.8346 -0.001735 0.9924 : 0.02972
HW (6 to 6.9)+ | 0.8858 6.203*10° -0.8957 -0.001959 0.9904 : 0.01929
HW (6 t0 6.9) 1.166 -4.699%107 -1.1730 -0.001539 0.9957 : 0.03113
HW (5 t05.9) 98.45 0.0023 -98.53 -0.0142 0.8363 : 23.83
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Figure 5.29. Frequency distribution (top) and CDF fitting (bottom) of Mw 7.0-7.9 FDHI hanging wall data,

exponential and random.
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Figure 5.30. Frequency distribution (top) and CDF fitting (bottom) of Mw 7.0-7.9 FDHI hanging wall data,
exponential only.
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FDHI Reverse HW Mw 6.0-6.9 exponential + random
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Figure 5.31. Frequency distribution (top) and CDF fitting (bottom) of Mw 6.0-6.9 FDHI hanging wall data,

exponential and random.

69




P v
(=] o
I 1

Frequency
w
o

FDHI Reverse HW Mw 6.0-6.9 exponential

I Frequency

—=—Cumulative %

- 100%
- 90%
- 80%
- 70%
- 60%
- 50%

n=87
- 40%
- 30%
10 - 20%
I - 10%
0 Bl T T T T T T T 0%
0 500 1000 1500 2000 2500 3000 3500 More
Bin
[ hwan o]+
| Fitname: HW_all Exponential a Auto fit
t X data: hwébin (<] Number of terms: 2 Elt
| vdata: hwecumm Equation: a%exp(b*x) + c*expld™x) Stop
| Center and scale
| Zdaa (none) 3
{ Fit Options...
| Weights: (none) &
|
|
| Results
|| General model Expz:
| f(x) = a*exp(b*x) + c*exp(d*x) « hwBcumm vs. hwbin
| | Coefficients (with 95% confidence bounds): ——HW.
a= 1166 (0.7767, 1.556)
: b= -4.69%-05 (-0.0001529, 5.892e-05)
| c¢= -1173 (-1.559, -0.7874) 4
| d= -0.001539 (-0.002274, -0.0008048)
| 4
| | Goodness of fit: zs‘oo 3000 a;m
| SSE: 0.003876
| | R-square: 0.9957 .
| QE;EEIE\LI;-:&UME: 0.9924 oosl T I —r 1
| 002 q
| E ool l 8
| § o—1
li £ =001 l 7
| -002 - 7
| i 1 L 1 L L L ]
0 500 1000 1500 2000 2500 3000 3500

Figure 5.32. Frequency distribution (top) and CDF fitting (bottom) of Mw 6.0-6.9 FDHI

exponential only.
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Note that there was no random portion of displacement for the Mw 5.0-5.9 bin. In addition, this
bin showed displacements less than 100 m so the bin widths were reduced to 20 m to better
quantify the data in this range.
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General model Exp2:
f(x) = a"exp(b™x) + cexp(d’x)
Coefficients (with 95% confidence bounds):
a= 98.45 (-5566, 5763)
b= 0.00228 (-0.3284, 0.333)
c= -88.53 (-5734, 5537)
d= -0.01417 (-0.7329, 0.7046)

of fit:

Table Of Fits

(~]

= |EE Fit name |EEDaha ‘EEFiltype

i R-square

i SSE

::DFE

i Adj R-sq

::RMSE

ii# Coeff

ii Validation Data |EE Validatid

& |untited fit1 | hwscu... |exp2

0.83629

1136

2

0.59072

23.832

4

SSE: 1136

R-square: 0.8363
Adjusted R-square: 0.5907
RMSE: 23.83

Figure 5.33. Frequency distribution (top) and CDF fitting (bottom) of Mw 5.0-5.9 FDHI hanging wall data.
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Below are the frequency plots and the table of footwall data evaluated for magnitude and
tectonic dependence.
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Figure 5.34. Frequency distribution (top) and CDF fitting (bottom) of Mw 7.0-7.9 FDHI footwall data,
exponential and random.
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Figure 5.35. Frequency distribution (top) and CDF fitting (bottom) of Mw 7.0-7.9 FDHI footwall data,
exponential only.
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Figure 5.36. Frequency distribution (top) and CDF fitting (bottom) of Mw 6.0-6.9 FDHI foot wall data.
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Note the FDHI database of reverse events contained no random portion of displacements for the
Mw 6.0-6.9 bin for foot wall. In addition, there were no foot wall distributed displacements

measured for Mw less than 6.0.

Table 5.5. Coefficients for Equation 26 for Reverse Mechanism Footwall Distributed Deformations

from FDHI data.

a b c d R2 : RMSE
FW (7 to 7.9)+ | 0.1959 0.0001 -0.2020 -0.0026 0.8547 : 0.08085
FW (7t07.9) 1.445 -7.08%107° -1.4540 -0.0007 0.9959 : 0.03045
FW (6t06.9) | 0.9297 2.51*¥107 -0.9233 -0.002 0.9930 : 0.03816
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5.2.3 NORMALIZED SCALING OF DISTRIBUTED DEFORMATIONS

To provide scaling of the distributed displacements (d) we have normalized it by the maximum
(MD) and average (AD) principal displacement for each event. Figure 1 shows all events color
coded to observe the contribution each has to the footwall (negative  values) and the hanging
wall (positive » values). Here 7 is the distance from principal fault strike. Both d/MD and d/AD
relationships are shown.

Figure 2 provides box plots of the data to observe the central tendency and dispersion. The
lower plot shows the specific values that are used to calculate the statistics. Figure 3 shows the
50" percentile values from the binned data. Various bin sizes were evaluated and it was found
that the following bins, +0.1km centered on zero, 0.1 to 1km, 1km to 3km, and greater than
3km, provided the clearest explanation of changes with distance given the current data density.

Subsequent plots (Figure 4) show the exploration of how the 50" percentiles are affected by
dropping individual events out. Here we can see that Kaikoura has a large impact on the
distances far from principal strike. Meckering has an impAact in the 1 to 3 km range. Other
events that have a lesser impact on the percentiles at less than 3 km are Chi Chi and Tennant
Creek?2.

Figure 5 shows the d/MD data using the 95" percentiles compared to other studies. Figure 6
shows the d/MD data using the 50" percentile and fitting an envelope compared to other studies.
The envelope uses the following exponential form:

d/MD = c xexp(d * 1) (5.8)
Coeftficients are shown in Tables 2 and 3. Figure 7 shows the d/AD data using the 95"

percentiles compared to other studies, and Figure 8 shows the d/AD using 50" percentile and
fitting an envelope compared to other studies.
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79



200%

——minus Wenchuan ——minus ChicChi ——minus Kaikoura
minus SanFernando ——minus Kern ,,—‘Fnint{s Petermann
150% ——minus EIAsnam ——minus Cadoux _--~7 ——minus Meckering
——minus TennantCreek2 ——minus Mika\yax" —m,'(nus\ITeTeiI
100% ——minus Nagano ——minug Kashimir rhinus Oglingiri
minus Rikku ——=minus Iwatelnland / \
- 4
50%
[
0o
c
T 0%
<
Q
-
@
-50%
e
@
o
-100%
-150%
-200%
-250%
-15000 -10000 -5000 0 5000 10000 15000
r (km)
r(m
200% (m)
——minus Wenchuan ——minus ChiChi N ——minus Kaikoura
. . Y .
minus SanFernando ——minus Kern N ——minus Petermann
150% ——minus ElAsnam ——minus Cadoux AN ——minus Meckering
——minus TennantCreek2 ,  ——minus Mikawa N ——minls LeTeil
——minus Nagano )/ ——minus Kashmir ‘\ —fninus Calingiri
. . ’ . ~
100% minus Rikku /! ——minus lwatelnland X
@ 50%
a0
c
©
S
- 0%
c
[
e
T
O s0%
-100%
-150%
-200%
-3000 -2000 -1000 0 1000 2000 3000
r (km)
r(m)
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Table 5.6. Showing percentiles for d/MD and d/AD over the r (m) range.

d/MD

r -11000 -2000 -550 0 550 2000 11000
95th 0.225 0.553 0.555 0.573 0476 0.453 0.650
85th 0.159 0531 0425 0.402 0.350 0.188 0.379
50th 0.092 0.169 0143 0.244 0121 0127 0.211
15th 0.043 0064 0.063 0.119 0.045 0.061 0.089
5th 0.028 0048 0028 0.081 0.020 0.052 0.062
d/AD

r -11000 -2000 -550 0 550 2000 11000
95th 0.860 1432 1610 1.588 1.784 1.261 1.274
85th 0.607 1.375 1.306 1.318 1.119 0.869 1.095
50th 0.340 0435 0.558 0.750 0493 0.496 0.637
15th 0.142 0.208 0.167 0.335 0179 0.327 0.340
5th 0.089 0128 0.102 0.282 0.109 0.272 0.206

From this analysis the median ratio of MD/AD for distributed displacements within plus/minus 3
km of principal faulting is 3.5.

81



O FDHIR/RO W -
(o]
0.9 — — Takaoet al (2013)
0.8 | eeeees Youngs et al (2003) )
(0]
& 95th percentiles
0.7 o
o © o o
0.6
[a) O %
S 0.5
=
©
0.4
[oXe]
0.3
(@] O O
O o]
0.2 o® o -
S A | NG O 00
O Phg OO
0.1 (@ e 5~ 8
L= O et e
.................... ©
0
-15,000 -10,000 - .

Figure 5.41. The d/MD is shown with 95t percentile values as compared to curves from other
studies. Takao et al (2013) curves are for the 90th percentile for reverse and strike slip events.
Youngs et al (2003) curves are for 85t to 95th percentile for normal events.
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Figure 5.42. The d/MD is shown here with a 50t percentile envelope for simple faulting compared
to curves from other studies.
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Figure 5.43. The d/MD is shown here with a 50t percentile envelope for complex faulting compared
to curves from other studies.
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Figure 5.44. The d/AD with 95t percentile values as shown compared to another study. Takao et al
(2013) curves are for the 90t percentile for reverse and strike slip events.
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Figure 5.45. The d/AD with 50t percentile values and median envelope compared to other studies.
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Table 5.7. d/MD coefficients for median envelope for simple and complex faulting.

d/MD simple
coeff c coeffd
0.245 -0.18 FW
0.245 -0.34 HW
d/MD complex
coeff ¢ coeff d
0.245 -0.09 FW
0.245 -0.015 HW

Table 5.8. d/MD coefficients for 85" percentile envelope for simple and complex faulting.

d/MD simple
coeff c coeffd
0.68 -0.13 FW
0.43 -0.4 HW
d/MD complex
coeff ¢ coeff d
0.68 -0.13 FW
0.43 -0.012 HW
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6 Hazard Curves

Combining the spatial variability of displacement and the dependence of surface rupture on
magnitude we arrive at Equation 2 from before:

P*(D > Dy|m, x/L) = P(SurfRup|m, Slip) P (D > D0|m,%,5urfRup) (6.1)

The final complementary cumulative distribution is found by combining the distributions, based
on one or more MD- or AD-based models. [As each of these probability distributions represents a
random variable and the product of these yields a probability distribution of displacement given
the occurrence of a magnitude m earthquake that ruptures past a site.]

A product of random variables can be shown to be equivalent to a logarithmic convolution (Glen
et al., 2004). By combining like distribution to like distribution [i.e., P(MD) * P(D/MD) or
P(AD) * P(D/AD)] we can arrive at the probability of exceedance and combining that with the
distribution of magnitude, typically a truncated exponential, and a fault rate, we can estimate the
displacement for an annualized return.

v(D,) = ajmmaxf(m) P(D > D,|m,x/L) dm (6.2)

Mmin

Numerically integrating the above equations was accomplished using Monte Carlo simulations.
We generate a realization of the spatial slip distribution and multiply it by a realization of the
displacement distribution and then repeat the process thousands of times to achieve a stable
resultant distribution. The same calculations are performed for distributed displacement as well,
which is based on normalized maximum principal displacement (d/MD) relationships.

An example hazard curve is shown below for a Mw7.5 reverse fault with a Smm/yr slip rate,
fault dimensions of 100km by 15km, stiff soil conditions (VS30>600m/s), middle of the fault
where x/L is 0.5, hanging wall conditions, and simple fault geometry. This figure shows how
principal and distributed displacements vary with distance from the fault.

Using a 975 year return period, which is typical of highway bridges, we can see that an 85
percentile estimate of displacement on the fault is 0.7m, at 100m from the fault it is 0.25m, and
at 500m from the fault it is 0.03m. Displacements beyond 500m are possible but for this hazard
level are not forecast.

The Matlab code for calculating hazard curves based on AD, MD, and d are provided in
Appendix C. The code requires the Statistics and Machine Learning Toolbox to run.
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Figure 6.1. Example hazard curve showing principal and distributed displacements for different
distances. These curves are showing results based on the 85 percentile of maximum displacement
(MD). The 975 year return period is shown, a typical hazard level for lifeline infrastructure.



7 Summary

This report contains the current methodology developed by this research team for forecasting the
probability of surface fault rupture for Reverse events. The methodology presents models for
average (AD) and maximum (MD) principal displacement, as well as for distributed
displacement (d). The data that was used to develop these models was primarily based on the
FDHI database but was also informed by the SURE 2.0 database. The models are valid within
the data ranges of the databases and extrapolating beyond those data ranges is not statistically
supported.
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Appendix A

The following Appendix contains example Matlab code for fitting distributions to the D/MD
data. A similar process was used for fitting distributions to the D/AD data. This requires the
Statistics and Machine Learning Toolbox.

$Performing stats on D/MD data 3/17/21

$load DMD-XL VS P.mat this is the D/MD values for principal vertical slip
clft;

%Concatenating arrays vertically using [A;B]

x L=all(:,2);
D MD=all(:,1);

$x_L=[Bohol91(:,2);ChiChi20(:,2);ChiChi65(:,2);ChiChi66(:,2) ;Kashmir71(:,2);N
agano68(:,2);Nagano69(:,2);Nagano70(:,2) ;Wenchuan44 (:,2) ;Wenchuan45(:,2) ;Wenc
huand6 (:,2);Wenchuan50 (:,2) ;Wenchuan51 (:,2)];

%D MD=[Bohol91(:,1);ChiChi20(:,1);ChiChi65(:,1);ChiChi66(:,1) ;Kashmir71(:,1);
Nagano68(:,1);Nagano69(:,1);Nagano70(:,1);Wenchuand4 (:,1);Wenchuan45(:,1);Wen
chuand6(:,1) ;Wenchuan50(:,1) ;Wenchuan51(:,1)];

%x_L new=[Kaikora32(:,2);Kaikora33(:,2);Kaikora34(:,2);Kaikora73(:,2);SanFern
ando2 (:,2) ;SanFernando86(:,2) ;Kernl22(:,2);Petermannl20(:,2);ElAsnaml34(:,2);
ElAsnaml35(:,2);Cadoux136(:,2);Calingiril36(:,2) ;MarryatCreekl36(:,2) ;Meckeri
ngl36(:,2);Pukatjal36(:,2);TennantCreekl1136(:,2) ;Rikuu86(:,2) ;Mikawa86(:,2);1I
wateinland86 (:,2) ;ChonKeminl52 (:,2)]

figure (1)
semilogy(x L,D MD,'o")

grid

xlabel ('x/L', 'Fontsize', 14)
ylabel ('D/MD', 'Fontsize', 14)

Sfigure (2)

$histogram(x_L)

$xlabel ('x/L', 'Fontsize',14)
%ylabel ('Frequency', 'Fontsize',14)

figure (2)

histogram (D _MD)

xlabel ('D/MD', "Fontsize',14)
ylabel ('Frequency', 'Fontsize',14)

%Anderson Darling test
(

% exponential (Gamma which is a subset of exponential) distribution
% p value less than 0.05 or 5% indicates high chance the distribution fits

[h,p,adstat,cv]=adtest (D_MD, 'Distribution’', 'exp');

%[h,p,adstat,cv]=adtest (x_L, 'Distribution', '"Weibull');
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%[h,p,adstat,cv]=adtest (x_L, 'Distribution', 'normal');
%[h,p,adstat,cv]=adtest (x_L, 'Distribution', 'lognormal’) ;

$force all inputs to be column vectors
D MD = D MD(:);

$prepare figure

figure (3)

hold on;

LegHandles = []; LegText = {};

$plot data originally in dataset "x L data"

[CdfF,CdfX] = ecdf (D MD, 'Function','cdf'); % compute empirical cdf
BinInfo.rule = 1;

[~,BinEdge] = internal.stats.histbins(D MD, [], [],BinInfo,CdfF,CdfX);
[BinHeight,BinCenter] = ecdfhist (CdfF,CdfX, 'edges',BinEdge) ;

hlLine = bar (BinCenter,BinHeight, 'hist"');

set (hLine, 'FaceColor', 'none', '"EdgeColor', [0.333333 0 0.666667], ...
'LineStyle','-"', 'LineWidth',1);

xlabel ('D/MD', '"Fontsize', 14);

ylabel ('Frequency', 'Fontsize',14)

LegHandles (end+1l) = hLine;

LegText{end+1} = 'D/MD data';

%create grid where function will be computed
XLim = get(gca, 'XLim');

XLim = XLim + [-1 1] * 0.01 * diff(XLim);
XGrid = linspace (XLim(1l),XLim(2),100);

%$fit this distribution to get parameter values

pd all = fitdist (D _MD, 'gamma');

YPlot = pdf(pd _all,XGrid);

hLine = plot (XGrid,YPlot, 'Color',[1 O O0],...
'LineStyle','-", 'LineWidth',2,...
'Marker', "'none', 'MarkerSize',6);

LegHandles (end+1l) = hLine;

LegText{end+1l} = 'gamma';

%adjust figure
box on;
hold off;

%create legend from accumulated handles and labels

hLegend = legend (LegHandles,LegText, 'Orientation’', 'wvertical', 'FontSize',

14, 'Location', 'northeast');
set (hLegend, '"Interpreter', 'none');

pd all
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%$sorting by x/L bins of 0.05 width

block=[x L,D MD];
sorted=sortrows (block);
x L sort=sorted(:,1);

D MD sort=sorted(:,2);

ll=sum(x L sort<=0.0499);
binl=D MD sort(1l:11);

12=sum(x L sort>=0.05 & x L sort<=0.0999);

bin2=D MD sort (11+1:11+12);

13=sum(x L sort>=0.10 & x L sort<=0.1499);
bin3=D MD sort (11+12+1:11+12+13);

l4=sum(x L sort>=0.15 & x L sort<=0.1999);
bin4=D MD sort (11+12+13+1:11+12+13+14);

15=sum(x L sort>=0.20 & x L sort<=0.2499);
bin5=D MD sort (11+12+13+14+1:11+12+13+14+15);

l6é=sum(x L sort>=0.25 & x L sort<=0.2999);
bin6=D MD sort (11+12+13+14+15+1:11+12+13+14+15+16);

17=sum(x L sort>=0.30 & x L sort<=0.3499);
bin7=D MD sort (11+12+13+14+15+16+1:11+12+13+14+15+16+17);

18=sum(x L sort>=0.35 & x L sort<=0.3999);
bin8=D MD sort (11+12+13+14+15+16+17+1:11+12+13+14+15+16+17+18);

19=sum(x L sort>=0.40 & x L sort<=0.4499);
bin9=D MD sort (11+12+13+14+15+16+17+18+1:11+12+13+14+15+16+17+18+19);

110=sum(x_L sort>=0.45 & x L sort<=0.50);
binl0=D MD sort (11+12+13+14+15+16+17+18+19+1:11+12+13+14+15+16+17+18+19+110) ;

%gamma fit by bin

pd 1 = fitdist(binl, 'gamma')
pd 2 = fitdist(bin2, 'gamma')
pd 3 = fitdist(bin3, 'gamma')
pd 4 = fitdist(bin4, 'gamma')
pd 5 fitdist (bin5, 'gamma')
( )

( )

( )

)

pd 6 fitdist (bin6, 'gamma'
pd 7 = fitdist(bin7, 'gamma'
pd 8 fitdist (bin8, 'gamma'
pd 9 = fitdist (bin9, 'gamma'
pd 10 = fitdist(binl0O, 'gamma')
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Appendix B

The following Appendix contains the 500m x 500m gridded events from the FDHI database for
determining the probability of nonzero distributed displacements. Notes:

1) Red lines are principal faults and blue lines are distributed faults.

2) Green circles indicate distributed ruptures on hanging wall and magenta crosses indicate
distributed ruptures on footwall.

3) Sometimes it is difficult to determine HW or FW if an event has complex principal faults.
For example, the Kaikoura earthquake.

4) An event may have no distributed rupture. For example, the Marryat Creek earthquake.
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Appendix C

The following appendix contains the PFDHA code for calculating hazard curves for average
displacement (AD), maximum displacement (MD), and distributed displacement (d). The code
is all written in MatLab and requires the Statistics and Machine Learning Toolbox.

Average Displacement (AD)

% Probabilistic Fault Displacement Hazard Analysis (PFDHA)
% Moss et al procedure for Average Displacement
% Last updated 12/18/23

clear all; close all; clc;

tic
disp("');
disp('computing........... please wait');

%b-value for the regional seismotectonics
b_value = 0.8;

%shear modulus in dyne/cm”2
shear_modulus = 3.75*10711;

%magnitude range for fault
min_mag = 5.0;
max_mag = 7.0;

%Length/Width in km of fault
length = 44;
width = 14;

area = length*(1000*100)*width*(1000*100); %in cm2

%shear wave velocity of the near surface material
vs30=700;

%location of interest along fault

%this has been descritized into 50 increments so a normalized bin range of
%0 to 0.1 equates to xL_min=1 and xL_max=10, for a bin range of 0.4 to 0.5
%equates to xL_min=41 and xL_max=50...

xL_min=21;

xL_max=30;
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%slip rate in cm/year back calculated from IAEA rate (eq_yr) that was given
%in research request and needs to be entered below
%eq_yr=1*107-3;

%Mo_eq=10"((3/2)*(max_mag+10.7)); %back calculating the seismic moment
%slip_rate = (Mo_eq * eq_yr) / (shear_modulus * area); %cm/yr

slip_rate=0.05; %cm/year

%The Truncated Exponential model is used to account for the variability in
%earthquake magnitudes
mag=1:1:251;

%magnitude range for this particular problem (0.01 bins)
beta = log(10)*b_value;

%number of simulations
sim=10000;

%probability density function for truncated exponential
f_m = beta * exp(-beta * (5+(2/250) * (mag - 1) - min_mag)) / (1-exp(-beta * (max_mag-min_mag)));

dm = 0.008;
dr=0.01;

denom = 0;
fors=1:1:250

denom = (f_m(s) * 10~(1.5 * (5+(2/250) * (s - 1)) + 16.05) + f_m(s + 1) * 107(1.5 * (5+(2/250) * (s)) +
16.05) )* dm/2 + denom;

end

N_m_min = shear_modulus*area*slip_rate / denom;

% The probability of displacement can be expressed as a function of two
%probabilities P(D>d|M,r) = P(Slip|M,r)*P(D>d|M,r,Slip)

%The first term is the probability that fault displacement will occur given

%that an earthquake has occurred P(Slip|M,r) is modeled using the following
%function per Youngs et al. equation 4:

%P(Slip|M,r)= exp(f(x)) / (1+ exp(f(x)) where f(x)=a+bM from regression
%Youngs et al found that for all events world wide they analyzed the coefficients
%were a =-12.51 and b = 2.053

%prn = exp(a + b * (5+(2/250) * (mag-1)));

%prd =1 + exp(a + b * (5+(2/250) * (mag-1)));
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Y%pr_slip=prn ./ prd ;

%The logistic regression results specific to reverse events from Moss & Ross
%2011 BSSA are in the form of the logistic function:
%P(Slip|M,r)= 1/(1+exp(f(x)) where f(x) is the same as above.

%a=7.3;
%b=-1.03;
Y%pr_slip=1./ (1 + exp(a + b * (5+(2/250) * (mag-1))));

%The logistic regression results were improved upon in Moss et al 2013 and
%an additional variable was added, VS30 of the projection of the

%rupture plane from depth. The logistic equation is the same but the
%fuction now includes VS30 as a predictor: P(Slip|M,r,VS30)=1/(1+exp(-z))
%where z=-13.9745+2.1395*M for VS30>600m/s "stiff" materials

%  z=-6.2548+0.8308*M for VS30<600m/s "soft" materials

if vs30>600

pr_slip = 1./(1 + exp(-(-13.9745 + 2.1395 * (5+(2/250) * (mag-1)))));
else

pr_slip = 1./(1 + exp(-(-6.2548 + 0.8308 * (5+(2/250) * (mag-1)))));
end

%The second term in the probability of displacement defines the conditional
%distribution of the amount of fault displacement given that slip has
%occurred. This term is analogous to an attenuation relationship and is
%constructed using empirical data. We want a distribution that captures
%the variability of fault displacement at the site with respect to the

%entire rupture.

%We are choosing to proceed here via Monte Carlo integration, the output of
%which will be inserted into the double integral over m and r to obtain the
%final probabilities.

%There are two terms here, the probability of D/MD or D/AD at any location
%and the probability of MD or AD. An empirical fit cumulative gamma
%distribution maps the P(D/AD) for a given x/L ratio, which is convolved
%with the P(AD) or P(MD) to arrive at the conditional probability of D.

%We now solve for the rupture displacement where the variable is treated as
%lognormally distributed.

%m will go from 1 to 251, therefore the magnitude itself will range from
%5-7 based on the scaling relation specified below. r will vary from 1 to
%51 and therefore vary x/L from 0 to 0.5, based on scaling relation specified
%below.
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nu = zeros(28, 2);

probDd = zeros(51, 251, 28);

form=1:1:251 %this gives the mag bins from 5-7

forr=1:1:51 %this gives the x/L bins from 0 to 0.5 with

%the range for r=1:1:51 with the start value,

%increment, and end value
%this part creates a monte carlo for a given value of m and x
%A is the Prob(AD|M) from linear regression (compared to Wells and
% Coppersmith regression) 0.148 * 2.302 is the standard deviation
%B is the Prob(D/AD|M,r) from statistical fitting of gamma
A = trinrnd(mu((5+(2/250) * (m - 1))) , 0.148*2.302, sim);
B = gamrnd(a_gam(0.5%(r - 1)/50), b_gam(0.5*(r - 1)/50), 1, sim);
%This next line takes a product of the random variables A and B
%stated above. It is computed by simply multiplying element n of A
%by element n of B to form combine(n). This provides the product
%of P(AD)*P(D/AD)
combine = A.*B;
%here a histogram is created from the data after the product of
%random variables has occurred, with 1000 bins as the default.
[n, Dbin] = hist(combine, 1000);

cdf = zeros(1000,1);

%CDF is created here by summing up bin weight from the left and
%normalizing by total number of data points.

cdf(1) = n(1);

foru=2:1:1000
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cdf(u) = n(u) + cdf(u-1);
end

invedf = 1 - cdf/cdf(1000);

%This is now the inv_CDF for a given value of x and m, but we need
%to pull a specific value from it at d. This wil be done by a
%difference algorithm to grab the right value. The sensitivity is

%set to 0.01

%d is just a dummy index
d=1;
%Here we set the range for the values of displacement we want.

%Each value of D will yield a new rate of events exceeding D, so
%the output of this PFDHA will yield nu(D).

v =0.01;

D =0.01;

while D <=10
nu(d, 1) = D;

%1000 is the last index in the CDF array. therefore the next
%loop goes up until 1000. It looks at every element of the
%Dbin array and subtracts that value from the value of D
%specified above. If the difference is less than the
%sensitivity of 0.01, it pulls that value out of the array and
%sticks it in our new discrete inverted CDF for D > D.

fori=1:1:1000
AA =D - Dbin(i);
if abs(AA) < 0.01
probDd(r, m, d) = invcdf(i, 1);

break
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end

% This clause in the for loop executes if the difference
% algorithm has failed. In other words, if no value of D
% is found to satisfy the sensitivity algorithm it

% Calls a spline based interpolation function--but first
% checks to see if D is larger than the bounds of Dbin.
% If so it forces the probability to be zero, otherwise it
% interpolates.

if i == 1000

if D > max(Dbin)
probDd(r, m, d) = 0;
else
probDd(r, m, d) = interp1(Dbin, invcdf, D, 'spline’);
end
end

end

%incrementing the dummy index

d=d+1;

D=D+yv;

if D<=0.9&& D > 0.09

v=0.1;

end

if D>0.9
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v=1;

end

end

end

end

%probDd now is a full Matrix. Since we have complete arrays for
%all three probability terms in the PFDHA integral, we now proceed to
%calculate the rate of events per year which exceed a given value of D.

%initializing nu to 0 before sum.

%250 blocks here instead of 251 since there are 251 points and 250
%actual rectangular volumes to integrate over.

%dd here is set to a maximum of 10 different values of D to compute nu for
%if number of D values specified above is less than 10, the remainder will
%show up as nu = 0 in the terminal.

%dd is a dummy index for a specific place in the prob(D>d) array. it will
%go from 1 to 10 and each index corresponds to the probability for a given
%value of D from above. So if D above went from 0.01 : 0.01: 0.1, dd = 1
%would be D = 0.01,dd = 2is D = 0.02, and so forth.
fordd=1:1:28

disp(".")

%initializing nu as zero before sum starts
rate = O;

formm=1:1:250 % magnitude range discretized into 205 increments
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for rr = xL_min : 1 : xL_max % x/L range discretized into 50 increments with
% with full range of 1:1:50

%here averaging over 4 square distanced datapoints and
%discretely computing the integral (sum)

rate = N_m_min*((f_m(mm) * probDd(rr, mm, dd) * pr_slip(mm) + f_m(mm) * probDd(rr+1, mm, dd)
* pr_slip(mm) + f_m(mm+1) * probDd(rr+1, mm+1, dd) * pr_slip(mm+1) + f_m(mm+1) * probDd(rr, mm+1,
dd) * pr_slip(mm+1))/4) * dm * dr + rate;

end

end

nu(dd, 2) = rate;
rate;

end

loglog(nu(:,1), nu(:,2))
xlabel('Displacment (m)")

ylabel('Annual Probability of Exceedance')
axis('tight');
set(gca,'FontSize',16,'FontWeight','bold")
grid on;

toc

function a_gamout = a_gam(xL)
a_gamout = 4.2797*xL + 1.6216;
end

%this is the a term in the gamma distribution fit to D/AD data

function b_gamout = b_gam(xL)
b_gamout = -0.5003*xL + 0.5133;

end
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%this is the b term in the gamma distribution fit to the D/AD data

function muout = mu(mag)

a_AD = -2.87;

b_AD = 0.416;

muout = log(10*(a_AD + b_AD*mag));
end

%this is the a and b linear regression terms for P(AD|M,r)

%for all data in Mea21 the equation is log10(AD)=0.39871*Mw-2.75606
%for FDHI data only the equation becomes log10(AD)=0.4395*Mw-3.0396
%Note: there is virtually no difference in these equations

%for complete rupture in Mea22 log10(AD)=0.416*"Mw-2.87

function truncout = trinrnd(mu, sigma, n)

%monte carlo sampling for a truncated lognormal distribution. zmax is the

%maximum value where truncation occurs, here it is specified as AD = 15m.

%n random numbers between 0 and zmax are generated and thrown into the

%Inverted CDF for a truncated lognormal distribution, then pass them back.

z = unifrnd(0, 1, 1, n);

Y%truncout = exp(sqrt(2*sigma*sigma)*erfinv(2*z*(logncdf(log(15), mu, sigma)) - 1) + mu);
epsilon_max=5;

cdf_min=logncdf(exp(mu-epsilon_max*sigma),mu,sigma);
cdf_max=logncdf(exp(mu+epsilon_max*sigma),mu,sigma);

truncout=exp(sigma*sqrt(2)*erfinv(2*(z-0.5)*(cdf_max-cdf_min))+mu);

end
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Maximum Displacement (MD)

% Probabilistic Fault Displacement Hazard Analysis (PFDHA)
% Moss et al procedure for Maximum Displacement
% Last updated 12/18/23

clear all; close all; clc;

tic
disp(" );
disp(‘computing........... please wait'");

%b-value for the regional seismotectonics
b_value = 0.8;

%shear modulus in dyne/cm”2
shear_modulus = 3.75*10711;

%magnitude range for fault
min_mag = 5.0;
max_mag = 7.5;

%Length/Width in km of fault
length = 100;
width = 15;

area = length*(1000*100)*width*(1000*100); %in cm”"2

%shear wave velocity of the near surface material
vs30=700;

%location of interest along fault

%this has been descritized into 50 increments so a normalized bin range of
%0 to 0.1 equates to xL_min=1 and xL_max=10, for a bin range of 0.4 to 0.5
%equates to xL_min=41 and xL_max=50...

XxL_min=41;

xL_max=50;

%slip rate in cm/year back calculated from IAEA rate (eq_yr) that was given
%in research request and needs to be entered below
%eq_yr=1*101-3;

%Mo_eq=107((3/2)*(max_mag+10.7)); %back calculating the seismic moment
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%slip_rate = (Mo_eq * eq_yr) / (shear_modulus * area); %cm/yr
slip_rate= 0.5; %cm/yr

%The Truncated Exponential model is used to account for the variability in
%earthquake magnitudes
mag=1:1:251;

%magnitude range for this particular problem (0.01 bins)
beta = log(10)*b_value;

%number of simulations
sim=10000;

%probability density function for truncated exponential
f_m = beta * exp(-beta * (5+(2/250) * (mag - 1) - min_mag)) / (1-exp(-beta * (max_mag-min_mag)));

dm = 0.008;
dr=0.01;

denom = 0;
fors=1:1:250

denom = (f_m(s) * 10~(1.5 * (5+(2/250) * (s - 1)) + 16.05) + f_m(s + 1) * 107(1.5 * (5+(2/250) * (s)) +
16.05) )* dm/2 + denom;

end

N_m_min = shear_modulus*area*slip_rate / denom;

% The probability of displacement can be expressed as a function of two
%probabilities P(D>d|M,r) = P(Slip|M,r)*P(D>d|M,r,Slip)

%The first term is the probability that fault displacement will occur given

%that an earthquake has occurred P(Slip|M,r) is modeled using the following
%function per Youngs et al. equation 4:

%P(Slip|M,r)= exp(f(x)) / (1+ exp(f(x)) where f(x)=a+bM from regression
%Youngs et al found that for all events world wide they analyzed the coefficients
%were a =-12.51 and b = 2.053

%prn = exp(a + b * (5+(2/250) * (mag-1)));

%prd =1+ exp(a + b * (5+(2/250) * (mag-1)));

Y%pr_slip =prn ./ prd ;

%The logistic regression results specific to reverse events from Moss & Ross

%2011 BSSA are in the form of the logistic function:
%P(Slip|M,r)= 1/(1+exp(f(x)) where f(x) is the same as above.
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%a=7.3;
%b=-1.03;
%pr_slip=1./ (1 + exp(a + b * (5+(2/250) * (mag-1))));

% The logistic regression results were improved upon in Moss et al 2013 and
%an additional variable was added, VS30 of the projection of the

%rupture plane from depth. The logistic equation is the same but the
%fuction now includes VS30 as a predictor: P(Slip|M,r,vVS30)=1/(1+exp(-z))
Y%where z=-13.9745+2.1395*M for VS30>600m/s "stiff" materials

%  z=-6.2548+0.8308*M for VS30<600m/s "soft" materials

if vs30>600

pr_slip = 1./(1 + exp(-(-13.9745 + 2.1395 * (5+(2/250) * (mag-1)))));
else

pr_slip = 1./(1 + exp(-(-6.2548 + 0.8308 * (5+(2/250) * (mag-1)))));
end

%The second term in the probability of displacement defines the conditional
%distribution of the amount of fault displacement given that slip has
%occurred. This term is analogous to an attenuation relationship and is
%constructed using empirical data. We want a distribution that captures
%the variability of fault displacement at the site with respect to the

%entire rupture.

%We are choosing to proceed here via Monte Carlo integration, the output of
%which will be inserted into the double integral over m and r to obtain the
%final probabilities.

%There are two terms here, the probability of D/MD or D/AD at any location
%and the probability of MD or AD. An empirical fit cumulative gamma
%distribution maps the P(D/AD) for a given x/L ratio, which is convolved
%with the P(AD) or P(MD) to arrive at the conditional probability of D.

%We now solve for the rupture displacement where the variable is treated as
%lognormally distributed.

%m will go from 1 to 251, therefore the magnitude itself will range from
%5-7 based on the scaling relation specified below. r will vary from 1 to
%51 and therefore vary x/L from 0 to 0.5, based on scaling relation specified

%below.

nu = zeros(28, 2);

probDd = zeros(51, 251, 28);
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form=1:1:251 %this gives the mag bins from 5-7
%disp('.")
forr=1:1:51 %this gives the x/L bins from 0 to 0.5 with
%the range for r=1:1:51 with the start value,
%increment, and end value

%this part creates a monte carlo for a given value of m and x

%A is the Prob(MD|M) from linear regression (compared to Wells and
% Coppersmith regression) 0.133 * 2.302 is the standard deviation

%B is the Prob(D/MD|M,r) from statistical fitting of gamma or
%weibull distributions

A = trinrnd(mu((5+(2/250) * (m - 1))) , 0.133*2.302, sim);

B = gamrnd(a_gam(0.5%(r - 1)/50), b_gam(0.5*(r - 1)/50), 1, sim);
B(B>=1)=1; %truncating the gamma distribution

%This next line takes a product of the random variables A and B
%stated above. It is computed by simply multiplying element n of A
%by element n of B to form combine(n). This provides the product
%of P(MD)*P(D/MD)

combine = A.*B;

%here a histogram is created from the data after the product of
%random variables has occurred, with 1000 bins as the default.
[n, Dbin] = hist(combine, 1000);

cdf = zeros(1000,1);

%CDF is created here by summing up bin weight from the left and
%normalizing by total number of data points.

cdf(1) = n(1);

foru=2:1:1000

cdf(u) = n(u) + cdf(u-1);
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end

invedf = 1 - cdf/cdf(1000);

% This is now the inv_CDF for a given value of x and m, but we need
%to pull a specific value from it at d. This wil be done by a
%difference algorithm to grab the right value. The sensitivity is

%set to 0.01

%d is just a dummy index
d=1;
%Here we set the range for the values of displacement we want.

%Each value of D will yield a new rate of events exceeding D, so
%the output of this PFDHA will yield nu(D).

v =0.01;

D =0.01;

while D <= 10
nu(d, 1) = D;

%1000 is the last index in the CDF array. therefore the next
%Iloop goes up until 1000. It looks at every element of the
%Dbin array and subtracts that value from the value of D
%specified above. If the difference is less than the
%sensitivity of 0.01, it pulls that value out of the array and
%sticks it in our new discrete inverted CDF for D > D.
fori=1:1:1000

AA =D - Dbin(i);

if abs(AA) < 0.01

probDd(r, m, d) = invcdf(i, 1);
break

end
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% This clause in the for loop executes if the difference
% algorithm has failed. In other words, if no value of D
% is found to satisfy the sensitivity algorithm it

% Calls a spline based interpolation function--but first
% checks to see if D is larger than the bounds of Dbin.
% If so it forces the probability to be zero, otherwise it
% interpolates.

if i == 1000

if D > max(Dbin)
probDd(r, m, d) = 0;
else
probDd(r, m, d) = interp1(Dbin, invcdf, D, 'spline’);
end
end

end

%incrementing the dummy index

d=d+1,;

D=D+y;

if D<=0.9&& D > 0.09

v=0.1;

end

if D>0.9

v=1;
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end

end

end

end

%probDd now is a full Matrix. Since we have complete arrays for
%all three probability terms in the PFDHA integral, we now proceed to
%calculate the rate of events per year which exceed a given value of D.

%initializing nu to 0 before sum.

%250 blocks here instead of 251 since there are 251 points and 250
%actual rectangular volumes to integrate over.

%dd here is set to a maximum of 10 different values of D to compute nu for
%if number of D values specified above is less than 10, the remainder will
%show up as nu = 0 in the terminal.

%dd is a dummy index for a specific place in the prob(D>d) array. it will
%go from 1 to 10 and each index corresponds to the probability for a given
%value of D from above. So if D above went from 0.01 : 0.01: 0.1, dd = 1
%would be D = 0.01, dd = 2is D = 0.02, and so forth.

fordd=1:1:28

disp(".")

%initializing nu as zero before sum starts
rate = 0;

formm=1:1:250 % magnitude range discretized into 205 increments

forrr=xL_min: 1 : xL_max % x/L range discretized into 50 increments with
% with full range of 1:1:50
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%here averaging over 4 square distanced datapoints and
%discretely computing the integral (sum)

rate = N_m_min*((f_m(mm) * probDd(rr, mm, dd) * pr_slip(mm) + f_m(mm) * probDd(rr+1, mm, dd)
* pr_slip(mm) + f_m(mm+1) * probDd(rr+1, mm+1, dd) * pr_slip(mm+1) + f_m(mm-+1) * probDd(rr, mm+1,
dd) * pr_slip(mm+1))/4) * dm * dr + rate;

end

end

nu(dd, 2) = rate;
rate;

end

loglog(nu(:,1), nu(:,2))
xlabel('Displacment (m)")

ylabel('Annual Probability of Exceedance')
axis('tight');
set(gca,'FontSize',16,'FontWeight','bold")
grid on;

toc

function a_gamout = a_gam(xL)
a_gamout = 1.4244*xL + 1.856;
end

%this is the a term in the gamma distribution fit to D/MD data

function b_gamout = b_gam(xL)
b_gamout = -0.0832*xL +0.1994;
end

%this is the b term in the gamma distribution fit to the D/MD data
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function muout = mu(mag)

a_MD =-2.5;

b_MD = 0.415;

sigma_mu = 0.148; %add sigmas for non-median values
muout = log(10*(a_MD + b_MD*mag + sigma_mu));

end

%this is the a and b linear regression terms for P(MD|M,r)

%for all data in Mea22 the equation is log10(MD)=0.40126*Mw-2.59939
%for FDHI data only in Mea22 it becomes log10(MD)=0.48150*Mw-2.9305
%for complete rupture in Mea22 it becomes log10(MD)=0.415*Mw-2.50
%for non-median values log10(MD)=0.415*Mw-2.5+(#sigmas*0.148)

function truncout = trinrnd(mu, sigma, n)

%monte carlo sampling for a truncated lognormal distribution. zmax is the

%maximum value where truncation occurs, here it is specified as MD = 15m.

%n random numbers between 0 and zmax are generated and thrown into the

%Inverted CDF for a truncated lognormal distribution, then pass them back.

z = unifrnd(0, 1, 1, n);

%truncout = exp(sqrt(2*sigma*sigma)*erfinv(2*z*(logncdf(log(15), mu, sigma)) - 1) + mu);
epsilon_max=5; %based on DBA's corrections 9/14/23
cdf_min=logncdf(exp(mu-epsilon_max*sigma),mu,sigma);

cdf_max=logncdf(exp(mu+epsilon_max*sigma),mu,sigma);

truncout=exp(sigma*sqrt(2)*erfinv(2*(z-0.5)*(cdf_max-cdf_min))+mu);

end
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Distributed Displacement (d)

% Probabilistic Fault Displacement Hazard Analysis (PFDHA)
% Moss et al for distributed or off-fault displacement
% Last revised 12/18/23

clear all; close all; clc;

tic
disp(' );
disp(‘computing........... please wait");

%b-value for the regional seismotectonics
b_value = 0.8;

%shear modulus in dyne/cm”2
shear_modulus = 3.75*10211;

%magnitude range for fault
min_mag = 5.0;
max_mag = 7.5;

%Length/Width in km of fault

length = 100;

width = 15;

area = length*(1000*100)*width*(1000*100); %in cm”"2
%shear wave velocity of the near surface material
%stiff>600m/s soft<600m/s

vs30=700;

%location of interest along fault

%this has been descritized into 50 increments so a normalized bin range of
%0 to 0.1 equates to xL_min=1 and xL_max=10, for a bin range of 0.4 to 0.5

%equates to xL_min=41 and xL_max=50...
xL_min=41;
xL_max=50;

%r_dist is the distance from fault strike in meters
%wall is the flag for hanging wall wall=1 or foot wall wall=0

%complex is the flag for simple fault (0) or complex multi-fault system (1)
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%mbc is the flag for magnitude bin center mbc=7.5, or 6.5, or 5.5
r_dist=3000; %meters

wall=1;

complex=0;

mbc=7.5;

%slip rate in cm/year back calculated from IAEA rate (eq_yr) that was given
%in research request and needs to be entered below
%eq_yr=1*10"-3;

%Mo_eq=107((3/2)*(max_mag+10.7)); %back calculating the seismic moment
%slip_rate = (Mo_eq * eq_yr) / (shear_modulus * area); %cm/yr

slip_rate= 0.5; %cm/yr

%The Truncated Exponential model is used to account for the variability in
%earthquake magnitudes
mag=1:1:251;

%magnitude range for this particular problem (0.01 bins)
beta = log(10)*b_value;

%number of simulations
sim=10000;

%probability density function for truncated exponential
f_m = beta * exp(-beta * (6+(2/250) * (mag - 1) - min_mag)) / (1-exp(-beta * (max_mag-min_mag)));

dm = 0.008;
dr=0.01;

denom = 0;
fors=1:1:250

denom = (f_m(s) * 10~(1.5 * (5+(2/250) * (s - 1)) + 16.05) + f_m(s + 1) * 107(1.5 * (5+(2/250) * (s)) +
16.05) )* dm/2 + denom;

end

N_m_min = shear_modulus*area*slip_rate / denom,;

% The probability of displacement can be expressed as a function of two
%probabilities P(D>d|M,r) = P(Slip|M,r)*P(D>d|M,r,Slip)

%The first term is the probability that fault displacement will occur given

%that an earthquake has occurred P(Slip|M,r) is modeled using the following
%function per Youngs et al. equation 4:
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%P(Slip|M,r)= exp(f(x)) / (1+ exp(f(x)) where f(x)=a+bM from regression
%Youngs et al found that for all events world wide they analyzed the coefficients
%were a =-12.51 and b = 2.053

%prn = exp(a + b * (5+(2/250) * (mag-1)));

%prd =1 + exp(a + b * (5+(2/250) * (mag-1)));

%pr_slip=prn ./ prd ;

%The logistic regression results specific to reverse events from Moss & Ross
%2011 BSSA are in the form of the logistic function:
%P(Slip|M,r)= 1/(1+exp(f(x)) where f(x) is the same as above.

%a=7.3;
%b=-1.03;
Y%pr_slip=1./ (1 + exp(a + b * (6+(2/250) * (mag-1))));

%The logistic regression results were improved upon in Moss et al 2013 and
%an additional variable was added, VS30 of the projection of the

%rupture plane from depth. The logistic equation is the same but the
%fuction now includes VS30 as a predictor: P(Slip|M,r,vVS30)=1/(1+exp(-z))
%where z=-13.9745+2.1395*M for VS30>600m/s "stiff" materials

%  z=-6.2548+0.8308*M for VS30<600m/s "soft" materials

if vs30>600

pr_slip = 1./(1 + exp(-(-13.9745 + 2.1395 * (5+(2/250) * (mag-1)))));
else

pr_slip = 1./(1 + exp(-(-6.2548 + 0.8308 * (5+(2/250) * (mag-1)))));
end

% The second term in the probability of displacement defines the conditional
%distribution of the amount of fault displacement given that slip has
%occurred. This term is analogous to an attenuation relationship and is
%constructed using empirical data. We want a distribution that captures
%the variability of fault displacement at the site with respect to the

%entire rupture.

%We are choosing to proceed here via Monte Carlo integration, the output of
%which will be inserted into the double integral over m and r to obtain the
%final probabilities.

%There are two terms here, the probability of D/MD or D/AD at any location
%and the probability of MD or AD. An empirical fit cumulative gamma
%distribution maps the P(D/AD) for a given x/L ratio, which is convolved
%with the P(AD) or P(MD) to arrive at the conditional probability of D.

%We now solve for the rupture displacement where the variable is treated as
%lognormally distributed.
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%m will go from 1 to 251, therefore the magnitude itself will range from
%5-7 based on the scaling relation specified below. r will vary from 1 to
%51 and therefore vary x/L from 0 to 0.5, based on scaling relation specified
Y%below.

nu = zeros(28, 2);

probDd = zeros(51, 251, 28);

form=1:1:251 %this gives the mag bins from 5-7
%disp('.")
forr=1:1:51 %this gives the x/L bins from 0 to 0.5 with
%the range for r=1:1:51 with the start value,
%increment, and end value

%this part creates a monte carlo for a given value of m and x

%A is the Prob(MD|M) from linear regression (compared to Wells and
% Coppersmith regression) 0.133 * 2.302 is the standard deviation

%B is the Prob(D/MD|M,r) from statistical fitting of gamma or
Y%weibull distributions

A = trinrnd(mu((5+(2/250) * (m - 1))) , 0.133*2.302, sim);

B = gamrnd(a_gam(0.5*(r - 1)/50), b_gam(0.5*(r - 1)/50), 1, sim);
B(B>=1)=1; %truncating the gamma distribution

%This next line takes a product of the random variables A and B

%stated above. It is computed by simply multiplying element n of A

%by element n of B to form combine(n). This provides the product

%of P(MD)*P(D/MD)

combine = A.*B;

%here a histogram is created from the data after the product of

%random variables has occurred, with 1000 bins as the default.

[n, Dbin] = hist(combine, 1000);

cdf = zeros(1000,1);
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%CDEF is created here by summing up bin weight from the left and
%normalizing by total number of data points.

cdf(1) = n(1);

foru=2:1:1000
cdf(u) = n(u) + cdf(u-1);
end
invedf = 1 - cdf/cdf(1000);
%This is now the inv_CDF for a given value of x and m, but we need
%to pull a specific value from it at d. This wil be done by a
%difference algorithm to grab the right value. The sensitivity is
%set to 0.01
%d is just a dummy index
d=1,;
%Here we set the range for the values of displacement we want.

%Each value of D will yield a new rate of events exceeding D, so
%the output of this PFDHA will yield nu(D).

v =0.01;

D =0.01;

while D <= 10
nu(d, 1) = D;

%1000 is the last index in the CDF array. therefore the next
%loop goes up until 1000. It looks at every element of the
%Dbin array and subtracts that value from the value of D
%specified above. If the difference is less than the
%sensitivity of 0.01, it pulls that value out of the array and
%sticks it in our new discrete inverted CDF for D > D.

fori=1:1:1000
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AA = D - Dbin(i);
if abs(AA) < 0.01

probDd(r, m, d) = invcdf(i, 1);
break

end
% This clause in the for loop executes if the difference
% algorithm has failed. In other words, if no value of D
% is found to satisfy the sensitivity algorithm it
% Calls a spline based interpolation function--but first
% checks to see if D is larger than the bounds of Dbin.

% If so it forces the probability to be zero, otherwise it
% interpolates.

if i == 1000

if D > max(Dbin)
probDd(r, m, d) = 0;
else
probDd(r, m, d) = interp1(Dbin, invcdf, D, 'spline');
end
end

end

%incrementing the dummy index
d=d+1;
D=D+yv;

if D<=0.9&& D > 0.09
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end

if D>0.9

Vv

1l
N

end

end

end

end

%probDd now is a full Matrix. Since we have complete arrays for
%all three probability terms in the PFDHA integral, we now proceed to
%calculate the rate of events per year which exceed a given value of D.

%initializing nu to 0 before sum.

%250 blocks here instead of 251 since there are 251 points and 250
%actual rectangular volumes to integrate over.

%dd here is set to a maximum of 10 different values of D to compute nu for
%if number of D values specified above is less than 10, the remainder will
%show up as nu = 0 in the terminal.

%dd is a dummy index for a specific place in the prob(D>d) array. it will
%go from 1 to 10 and each index corresponds to the probability for a given
%value of D from above. So if D above went from 0.01 : 0.01: 0.1, dd =1
%would be D = 0.01, dd = 2 is D = 0.02, and so forth.

fordd=1:1:28
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disp('.")

%initializing nu as zero before sum starts
rate = 0;

formm=1:1:250 % magnitude range discretized into 205 increments

for rr = xL_min : 1 : xL_max % x/L range discretized into 50 increments with
% with full range of 1:1:50

%here averaging over 4 square distanced datapoints and
%discretely computing the integral (sum)

rate = N_m_min*((f_m(mm) * probDd(rr, mm, dd) * pr_slip(mm) + f_m(mm) * probDd(rr+1, mm, dd)
* pr_slip(mm) + f_m(mm+1) * probDd(rr+1, mm+1, dd) * pr_slip(mm+1) + f_m(mm+1) * probDd(rr, mm+1,
dd) * pr_slip(mm+1))/4) * dm * dr + rate;

end

end

nu(dd, 2) = rate;
rate;

end

%adjustment of hazard curve from MD to d which includes:
%1) the probability of occurrence term P(d>0),

%?2) probability of exceedence term P(d>do), and

%3) the d/MD term for scaling

%note: wall=1 is hanging wall and wall=0 is foot wall

if wall==1 %hanging wall

%prob nonzero for hanging wall at 85th percentile
pdOHW = exp(-2.2 * r_dist/1000 + 0.5 );
if pdOHW > 1.0
pdOHW = 1.0;
end

if mbc==7.5
if complex==
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Y%p_r_dist=(1-((110.4*exp(-0.000032*r_dist)-107.3*exp(-0.0014*r_dist)))/100)*0.06; %hanging
wall CDF where the 0.06 is the probabilty of distributed as a function of x/L 100 m bins
p_r_dist=(1-(0.6998*exp(2.75*10"-5*r_dist)-0.6931*exp(-0.001219*r_dist)))*pdOHW; %complex=1
else
r_dist_max=min(r_dist,3500); %this caps the distribution at the upper limit of the observed data
p_r_dist=(1-(0.8298*exp(5.682*107-5*r_dist_max)-0.8346*exp(-0.001735*r_dist_max)))*pdOHW;
%complex=0
end

elseif mbc==6.5
if complex==
p_r_dist=(1-(0.8858*exp(6.203*107-6*r_dist)-0.8957*exp(-0.001959*r_dist)))*pdOHW;
%complex=1
else
r_dist_max=min(r_dist,3500);
p_r_dist=(1-(1.166*exp(-4.699*107-5*r_dist_max)-1.1730*exp(-0.001539*r_dist_max)))*pdOHW;
%complex=0
end

elseif mbc==5.5
r_dist_max=min(r_dist,120);
p_r_dist=(1-(98.45%*exp(0.00228*r_dist_max)-98.53*exp(-0.01417*r_dist_max)))*pdOHW;
%complex=0
end

%distance corresponding to exponential or random displacements

if complex==
d_MD_ratio=0.43*exp(-0.4*r_dist/1000); %HW 85th percentile envelope
%d_MD_ratio=0.35*exp(-0.091*r_dist/1000); %Youngs et al

else
d_MD_ratio=0.43*exp(-0.012*r_dist/1000);%complex faulting

end

else %wall==0 foot wall

%prob nonzero for foot wall at 85th percentile
pdOFW = exp(-2.4 * r_dist/1000 + 0.4 );
if pdOFW > 1.0
pdOFW = 1.0;
end

if mbc==7.5
if complex==
%p_r_dist=(1-((84.12*exp(0.00006*r_dist)-83.09*exp(-0.0055*r_dist)))/100)*0.02; %foot wall cdf
were the 0.02 is the probabilty of distributed as a function of x/L 100 m bins
p_r_dist=(1-(0.1959*exp(0.0001091*r_dist)-2.202*10708*exp(-002554*r_dist)))*pdOFW;
%complex=1
else
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r_dist_max=min(r_dist,3500);
p_r_dist=(1-(1.445*exp(-7.078*107-5"r_dist_max)-1.454*exp(-0.0006972*r_dist_max)))*pd0OFW;
%complex=0
end

elseif mbc==6.5
r_dist_max=min(r_dist,3500);
p_r_dist=(1-(0.9297*exp(2.515*107-5%r_dist)-0.9233*exp(-0.01828*r_dist)))*pdOFW; %complex=0

else
p_r_dist=0;
end

%distance corresponding to exponential or random displacements
d_MD_ratio=0.68*exp(-0.13*r_dist/1000); %FW 85th percentile envelope
%d_MD_ratio=0.16*exp(-0.137*r_dist/1000); %Youngs et al

end

%nu(:,1)=nu(:,1)* d_MD_ratio

%nu(:,2)=n(:,2)* p_wrz;

d_off_fault=nu(:,1)*d_MD_ratio %adjusting MD by the d/MD ratio for off-fault location
d_rate=nu(:,2)*p_r_dist %adjusting the probability for off-fault location

%loglog(nu(:,1), nu(:,2))
loglog(d_off_fault,d_rate)
xlabel('Displacement (m)")

ylabel('Annual Probability of Exceedence')
axis('tight');
set(gca,'FontSize',16,'FontWeight','bold")
grid on;

toc

function a_gamout = a_gam(xL)
a_gamout = 1.4244*xL + 1.856;
end

%this is the a term in the gamma distribution fit to D/MD data

function b_gamout = b_gam(xL)
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b_gamout = -0.0832*xL +0.1994;
end

%this is the b term in the gamma distribution fit to the D/MD data

function muout = mu(mag)

a_MD =-2.5;

b_MD = 0.415;

sigma_mu = 0.148;

muout = log(10*(a_MD + b_MD*mag + sigma_mu));
end

%this is the a and b linear regression terms for P(MD|M,r)
%for all data in Mea22 the equation is log10(MD)=0.40126*Mw-2.59939
%for FDHI data only in Mea22 it becomes log10(MD)=0.48150*Mw-2.9305

%for complete rupture in Mea22 it becomes log10(MD)=0.415*Mw-2.50
%for uncertainty it becomes log10(MD)=0.415*Mw-2.15+(#sigma*0.148)

function truncout = trinrnd(mu, sigma, n)
%monte carlo sampling for a truncated lognormal distribution. zmax is the

%maximum value where truncation occurs, here it is specified as MD = 15m.

%n random numbers between 0 and zmax are generated and thrown into the

%Inverted CDF for a truncated lognormal distribution, then pass them back.

z = unifrnd(0, 1, 1, n);

%truncout = exp(sqrt(2*sigma*sigma)*erfinv(2*z*(logncdf(log(15), mu, sigma)) - 1) + mu);
epsilon_max=5;

cdf_min=logncdf(exp(mu-epsilon_max*sigma),mu,sigma);
cdf_max=logncdf(exp(mu+epsilon_max*sigma),mu,sigma);
truncout=exp(sigma*sqrt(2)*erfinv(2*(z-0.5)*(cdf_max-cdf_min))+mu);

end
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