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ABSTRACT 

 

This report covers research on a probabilistic fault displacement hazard analysis (PFDHA) 
model for reverse faulting events.  The goal was to provide the tools needed to estimate surface 
fault rupture displacements for reverse faults within a hazard forecasting framework.  This model 
supersedes previous models and includes: revised relationships between magnitude and 
maximum/average displacement, revised distributions of principal displacement along fault strike, 
improved distributions of principal displacement exceedance. the addition of distributed 
displacement models, and improved coding of the PFDHA methodology for hazard calculation.  
This work has been in conjunction with the UCLA-led Fault Displacement Hazard Initiative 
(FDHI), and specifically the FDHI database (Sarmiento et al., 2021) and the FDHI working group 
monthly discussions. Additional insights have been gained through participation in the PFDHA 
benchmarking project led by the International Atomic Energy Agency (IAEA).  Contained in this 
report are the statistical/analytical analyses and resulting mathematical functions that comprise the 
PFDHA calculation.  The code developed for performing these calculations are included in the 
appendix.  The results are a comprehensive set of options that allow users to forecast reverse fault 
displacements for both on-fault and off-fault locations.     

 

REVISIONS 

This report has been revised since its initial publication date.  The revisions address changes and 
corrections in the distributed displacement model and its coding.  The changes and corrections 
came about through the validation process initiated by the IAEA for vetting PFDHA codes.  The 
changes include: 

• Completely revised section on probability of nonzero distributed displacement, P(d>0), 
shown in pgs. 50-62. 

• Error correction in the coefficients reported for the frequency distributions of distributed 
displacements in shown in pgs. 63-75. 

• Revised d/MD and d/AD plots and the inclusion of tabulated percentiles shown in pgs. 
76-85. 

• Revised hazard curves for distributed displacement to reflect the changes in the model 
shown in pgs. 88. 

• Revised coding to reflect these changes and corrections, Appendix C. 
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1 Introduction 

This report covers research endeavors on updating a probabilistic fault displacement hazard 
analysis (PFDHA) model for reverse faulting events. The original model by Moss and Ross 
(2011) is superseded by the work presented herein. Updates on all components of the model are 
provided with justification for the revisions. Included in this updated PFDHA model are: 
 

o Revised relationships between magnitude and maximum/average displacement. 
o Revised distributions of principal displacement along fault strike. 
o Improved distributions of principal displacement exceedance. 
o The addition of distributed displacement modeling. 
o Improved coding of the PFDHA methodology for hazard calculation. 

 
The research team consists of individuals from diverse backgrounds with an interest in 
improving reverse fault displacement hazard calculations. A shared goal was to provide as useful 
a model as possible for engineering applications that wish to quantify fault displacement hazard 
where structures and facilities are located near or across reverse faults and avoiding these 
displacements may not be feasible.  This work has been aided significantly by the UCLA-led 
Fault Displacement Hazard Initiative (FDHI), and specifically the FDHI database (Sarmiento et 
al., 2021) and the FDHI working group monthly discussions. Additional insights have been 
gained through participation in the PFDHA benchmarking project led by the International 
Atomic Energy Agency (IAEA) (Valentini et al., 2021). 
 
The geometric relationships for the reverse faulting PFDHA model are shown in Figure 1.1. 
Reverse events result in contraction (shortening) and thickening of the crust, with the hanging 
wall (HW) block uplifted with respect to the footwall (FW) block. Surface rupture of the primary 
fault results in ground offset with a vertical principal surface-fault displacement (D). A particular 
point along the surface rupture is described by the ratio of its distance from the closest end point 
of the rupture (x) to the total surface rupture length (L). Surface-fault ruptures that occur on 
secondary faults or shears may be observed at distances (r) measured perpendicular to the 
principal rupture. These ruptures produce distributed vertical surface displacements (d). The use 
of vertical displacements as the intensity measure in our model (as opposed to, for example, 3-D 



2 
 

net displacement) is based on the types of measurements available in the empirical database and 
is discussed later in the report. 
 

 
 
  
Figure 1.1.  Geometry and symbols used in this study to describe surface-fault rupture of reverse 
earthquakes.  
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2 Probabilistic Framework 

The hazard curve for principal surface-fault displacement can be calculated in the following 
manner (Youngs et al., 2003; Moss and Ross, 2011): 
 

𝜐𝜐(𝐷𝐷0) = 𝛼𝛼� 𝑓𝑓(𝑚𝑚) 𝑃𝑃∗ �𝐷𝐷 > 𝐷𝐷0�𝑚𝑚, 𝑥𝑥𝐿𝐿�  𝑑𝑑𝑑𝑑                                    (2.1)
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

 

 
where 𝜐𝜐(𝐷𝐷0) is the mean annual rate of exceeding a specified principal surface displacement, α is 
the mean annual rate of earthquakes of minimum magnitude 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and greater from a specific 
source, and 𝑓𝑓(𝑚𝑚) is the probability distribution of earthquake magnitude on the source that 
ranges from 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 to a maximum magnitude 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. The term 𝑃𝑃∗(𝐷𝐷 > 𝐷𝐷0|𝑚𝑚, 𝑥𝑥 𝐿𝐿⁄ )defines the 
probability that a principal displacement 𝐷𝐷 exceeds a specified level 𝐷𝐷0. As the term suggests, 
this probability is magnitude- and location-dependent. Commonly, this relationship is developed 
for a specified style of faulting (i.e., normal, reverse, strike-slip) (Youngs et al., 2003; Petersen et 
al., 2011; Moss and Ross, 2011), or for a specific tectonic region of mixed styles of faulting (e.g., 
Takao et al., 2013; 2018). 
 
The conditional probability of displacement term is a product of two terms: 
 

𝑃𝑃∗(𝐷𝐷 > 𝐷𝐷0|𝑚𝑚, 𝑥𝑥/𝐿𝐿) = 𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆|𝑚𝑚, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 𝑃𝑃 �𝐷𝐷 > 𝐷𝐷0�𝑚𝑚, 𝑥𝑥𝐿𝐿 , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�              (2.2) 
 
The first term, 𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆|𝑚𝑚), defines the probability that an earthquake of magnitude 𝑚𝑚 
will produce surface-fault rupture. The second term, 𝑃𝑃(𝐷𝐷 > 𝐷𝐷𝑜𝑜|𝑚𝑚, 𝑥𝑥/𝐿𝐿, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)), is the 
displacement exceedance term, with the exceedance conditioned on an earthquake of magnitude 
𝑚𝑚 that ruptures the surface and evaluated at a normalized location 𝑥𝑥/𝐿𝐿 along the principal surface 
rupture. Solving equation (2.1) with the displacement exceedance term in equation (2.2) 
expressed as a complementary cumulative distribution function produces an annualized hazard 
curve that is the primary result of a PFDHA for principal faulting. Note that the equations for 
principal faulting implicitly assume that the evaluation site crosses the location of future 
principal fault rupture. In other words, there is no conditional probability that a principal 
earthquake rupture, given that it ruptures the ground surface, will miss the evaluation site either 
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as a gap in the surface rupture or as an epistemic uncertainty or aleatory variability in surface 
rupture location relative to the mapped location of the fault. Petersen et al. (2011) and Takao et 
al. (2013, 2014) provide examples of this additional term.  
 
The equation for distributed displacement PFDHA is similar to that of principal displacement but 
with the perpendicular distance from the principal surface rupture to the evaluation site (𝑟𝑟) and 
HW or FW location as variables instead of 𝑥𝑥/𝐿𝐿, as follows: 
 

𝜐𝜐(𝑑𝑑0) = 𝛼𝛼� 𝑓𝑓(𝑚𝑚)𝑓𝑓(𝑟𝑟|𝑚𝑚)𝑃𝑃∗ �𝑑𝑑 > 𝑑𝑑0�𝑚𝑚, 𝑟𝑟,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐹𝐹𝐹𝐹, 𝑥𝑥𝐿𝐿�  𝑑𝑑𝑑𝑑                  (2.3)
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

 

 
where the distributed displacement probability term can be separated into parts as follows: 
 

𝑃𝑃∗(𝑑𝑑 > 𝑑𝑑0|𝑚𝑚, 𝑟𝑟,𝐻𝐻𝐻𝐻 𝐹𝐹𝐹𝐹⁄ ) = 𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆|𝑚𝑚, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)𝑃𝑃(𝑅𝑅𝑅𝑅𝑅𝑅 𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆|𝑚𝑚, 𝑟𝑟,𝐻𝐻𝐻𝐻 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹, 𝑥𝑥/𝐿𝐿) 
𝑃𝑃(𝑑𝑑 > 𝑑𝑑0|𝑚𝑚, 𝑟𝑟,𝐻𝐻𝐻𝐻 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑅𝑅𝑅𝑅𝑅𝑅 𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)                             (2.4) 

 
For reverse (as well as normal) styles of faulting, the conditional probability of distributed 
rupture with distance and the distributed displacement exceedance distribution depend on 
whether the evaluation site is located on the hanging wall or footwall side of the fault. 
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3 Probability of Surface Rupture 

The probability of surface rupture, 𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆|𝑚𝑚) is the likelihood that a fault producing an 
earthquake of magnitude m ruptures the ground surface. For purposes of PFDHA, surface-fault 
rupture can be interpreted to also include near-surface fold scarp development (e.g., Streig et al., 
2007) or other forms of localized ground surface deformation related directly to slip at depth on 
the primary seismogenic fault plane. Although factors such as local seismogenic thickness, 
nucleation depth, fault dip, and geologic setting likely impact this probability, current empirical 
models mostly focus on earthquake magnitude as the main explanatory variable (e.g., Youngs et 
al., 2003; Petersen et al., 2011; Moss and Ross, 2011). Empirical models based on style of faulting 
and/or local tectonic setting have also been developed (Youngs et al., 2003; Moss and Ross, 2011; 
Takao et al., 2013, 2014), as well as models that look at both style of faulting and the local 
geomorphic setting as quantified by the topographic VS30  proxy method of Wald and Allen (2007) 
and Allen and Wald (2009)(Moss et al., 2013; 2018).  

Probability of surface rupture models have been based on the logistic regression that fits 
dichotomous outcomes of empirical datasets (dataset of compiled earthquakes of magnitude 𝑚𝑚 
that did or did not produce surface-fault rupture):  

 

𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆|𝑚𝑚) = 1
1 + 𝑒𝑒𝑎𝑎+𝑏𝑏𝑏𝑏

                                                       (3.1) 

 

where a and b are constants fit to the data. Moss and Ross (2011) developed a database of global 
reverse-faulting events for a moment magnitude (Mw) range of 5.5 to 8.0 that did and did not 
rupture the surface by expanding the prior dataset of Lettis et al. (1997), and found values of 𝑎𝑎 =
7.30 and 𝑏𝑏 = −1.03 fit the data well. Compared to regression parameters fit to data from all styles 
of faulting and normal styles of faulting only (Youngs et al., 2003), the global reverse data suggest 
that the likelihood of surface rupture for reverse events is significantly lower than for normal 
events (Figure 3.1). One physical reason that may partially explain this difference is that rock and 
soil materials can sustain much higher compressive forces than tensile forces. See analytical 
solutions for reverse and normal faulting in section 5.1 of this report. 
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Figure 3.1. Probability of surface rupture for reverse, normal, and all slip types (after Moss and Ross, 
2011).   

Moss and Ross (2011) used Figure  for their conditional probability of surface rupture given 
magnitude term, and found in a sensitivity analysis that this probability had highest impact on the 
resulting hazard curves compared to all other inputs.  Subsequent work by Moss et al. (2013) 
investigated more reverse mechanism data to provide a revised logistic regression for forecasting 
surface rupture. Many predictor variables were tested (e.g., depth to top of seismogenic fault 
plane, width of seismogenic fault plane) but the topographic-slope proxy values of VS30 provided 
the most predictive power, and Moss et al. (2013) interpreted this to reflect differences in near-
surface soil stiffness. Figure .2 shows the results of this statistical study for reverse and strike slip 
mechanisms. In the logistic regression a p-value less than 0.05 was achieved for all curves. 

The logistic function used in fitting the dichotomous data was the same as before, but the 
function accounted for more input variables: 

 

𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆|𝑚𝑚,𝑉𝑉𝑆𝑆30) =
1

(1 + 𝑒𝑒−𝑧𝑧)                                               (3.2) 

 

The input function is defined as a linear combination of regression coefficients 𝛽𝛽 and independent 
variables 𝑥𝑥. 

𝑧𝑧 = 𝛽𝛽 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2                                                        (3.3) 
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The moment magnitude range for the data evaluated in Moss et al. (2013) was 4.2 to 8.7.  The 
resulting distributions for reverse faulting, with a proxy VS30 value of 600 m/s as the boundary 
between stiff and soft, were defined as: 
 

𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = −13.9745 + 2.1395(𝑀𝑀𝑤𝑤)                                                (3.4) 
𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = −6.2548 + 0.8308(𝑀𝑀𝑤𝑤)                                                    (3.5) 
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Figure 3.2. Probability of surface rupture for reverse and strike slip mechanisms (after Moss et al., 2013).  
The topographic-slope-derived thirty meter shear wave velocity value of 600 m/s was used as the 
boundary between stiff and soft.   

Follow up research by Moss et al. (2018) used physical fault box studies, analytical models, and 
numerical simulations to further develop the understanding behind the likelihood of 
displacement at depth propagating to the ground surface. It was found that the stiffness of near-
surface soils influenced the thickness of the shear band (Figure 3.3).  Strain-hardening soils (i.e., 
soft) tend to have wide shear bands that absorb and diffuse deformations as they propagate 
upwards thereby requiring more basal deformation to rupture the ground surface.  Strain-
softening soils (i.e., stiff) have narrow shear bands that aid in propagating basal deformations to 
the ground surface.  It was also found that, compared to initial rupture of undisturbed soil, repeat 
ruptures on the same plane required less basal deformation to rupture the ground. 

 

Figure 3.3. The influence of soil stiffness on propagation of deformations to the surface through 40 m of 
particulate material.  Figure (a) is a simplified cross-sectional view of a shear band developed in a strain 
hardening or contractive material with a thirty meter shear wave velocity less than 600 m/s, whereas 
Figure (b) shows a shear band developed in a strain softening or dilatant material with a thirty meter 
shear wave velocity of more than 600 m/s. The narrower shear band in the stiffer soil ruptured to the 
surface with less basal displacement compared to the softer soil (after Moss et al., 2018). 

As cautioned by Moss et al. (2018), the correlation of a topographic slope-derived proxy for VS30 
with the probability of surface rupture for reverse faults may be related to factors other than near-
surface soil stiffness. For example, the topographic roughness and average slope in active reverse 
faulting environments may correlate with areas more likely to be crossed by emergent faults (i.e., 
faults intersecting the surface that can be traced by geologic mapping) versus areas more likely 
to be underlain by blind faults (with tops of the faults located kilometers below the surface). An 
example would be the San Fernando basin area of southern California, where the active, reverse 
Santa Susana fault has been mapped across the rugged slopes of the Transverse Ranges directly 
north of the basin, and the Northridge blind thrust fault has been identified beneath the gentle 
slopes of the basin. In this example, the topographic slope—and by extension, any topographic 
slope proxy—has an association with the type of reverse fault likely to be encountered. Steeper 
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slopes are crossed by emergent fault strands of the Santa Susana fault zone (capable of surface-
fault rupture), whereas the gentle, relatively smooth slopes of the basin are underlain by blind 
faults that are incapable of surface-fault rupture given their geometry. The potential for surface-
fault rupture in this case is controlled by the types of tectonic structures that have developed in 
each environment and has no direct relationship with near-surface soil properties. Given such 
concerns, application of VS30 data to inform the applicable conditional probability of surface 
rupture model should be done with some caution and on a project-specific basis. 
 
As an alternative to empirical models of the conditional probability of surface rupture, which 
rely on an underlying assumption of completeness of data for both surface rupturing and non-
rupturing earthquakes, one may develop a numerical approach to solve for the conditional 
probability of surface rupture. Youngs et al. (2003) note that this alternative may be implemented 
directly within a hazard code, which can place earthquake ruptures on a gridded, modeled fault 
plane according to magnitude-area scaling relations and aspect ratio scaling rules. Such 
approaches may then explicitly account for fault scaling relationships and local factors such as 
fault source width. We note that these numerical approaches may be performed within or outside 
the hazard code, and may use available magnitude-area and aspect ratio scaling models (e.g., 
Wells and Coppersmith, 1994; Leonard, 2010; 2014; Thingbaijam et al., 2017; Chiou and 
Youngs, 2008; Hanks and Bakun, 2008; 2014; Shaw, 2009; 2013) as well as models for 
earthquake hypocenter depth distributions and depth ratios (Chiou and Youngs, 2008; Goulet et 
al., 2018).  
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4 Probability of Principal Displacement  

4.1 SPATIAL DISPLACEMENT VARIABILITY 

The probability term 𝑃𝑃(𝐷𝐷 > 𝐷𝐷0|𝑚𝑚, 𝑥𝑥/𝐿𝐿, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) describes the probability of exceedance of a 
specified level of displacement given that surface rupture has occurred. This probability may be 
expressed as a complementary cumulative distribution function that is based on empirical data. It 
can be determined from two probability distributions: a distribution for the variability of 
displacement along the strike of the fault, and a distribution of the average or maximum 
displacement. 
 
Moss and Ross (2011) developed the distribution of variability along strike using 9 reverse 
events from Wesnousky (2008) and Kaneda et al. (2008).  The earthquake ruptures that were 
analyzed include the following: 1896 Rikuu, 1945 Mikawa, 1971 San Fernando, 1979 Cadeaux, 
1980 El Asnam, 1986 Marryat, 1988 Tennant Creek, 1999 Chi Chi, and 2005 Kashmir. The 
displacement measurement locations were normalized by the total rupture length and were 
treated as symmetric by folding at the midpoint of the fault rupture, or at x/L=0.5 (Figure 4.1). 
An assumption underlying the normalization is that patterns of primary surface faulting are scale 
independent, which we consider to be reasonable given studies of earthquake scaling (e.g., 
Savage and Brodsky, 2011). The folding approach is supported by Wesnousky (2008) and Biasi 
and Weldon (2006), and although we note that asymmetric surface ruptures are common 
(Manighetti et al., 2005), such asymmetric ruptures can be reasonably represented in the folding 
approach as there is no prior information currently available to anticipate the asymmetry 
direction. After normalization and folding, the ends of the rupture are at 𝑥𝑥/𝐿𝐿 = 0 and the 
midpoint of the rupture is at 𝑥𝑥/𝐿𝐿 = 0.5.  The displacement amplitudes are plotted as normalized 
by either the average or the maximum displacement (Figure 4.1).    
 
For statistical analysis, Moss and Ross (2011) grouped the data by 5% bin widths or 0.05 
normalized units. A variety of statistical distributions (including normal, lognormal, beta, 
gamma, and Weibull) were fit to the binned data, and the fits were scored using Anderson-
Darling goodness-of-fit tests (D’Agostino and Stephens, 1986). A confidence level of 99% was 
used to judge which distributions fit best.  It was found that gamma, Weibull, and beta were 
roughly equivalent in fitting the binned data; normal and lognormal distributions did not fit the 
data as well. The fitting did not require normalized displacements to be zero at the ends of the 
ruptures, in part because by using binned data there are nonzero displacements near the ends.  
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Figure 4.1.  Normalized displacement measurements from Moss and Ross (2011) using data from 
Wesnousky (2008) and Kaneda et al. (2008).  A normalized position along strike of 𝑥𝑥/𝐿𝐿 = 0 is the end of 
the fault and 𝑥𝑥/𝐿𝐿 = 0.5 is the midpoint of the fault.  Plot (a) shows the vertical displacement normalized 
by the maximum, 𝐷𝐷/𝑀𝑀𝑀𝑀, and plot (b) shows it normalized by the average, 𝐷𝐷/𝐴𝐴𝐴𝐴. 
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The FDHI project has provided new reverse-faulting displacement events and new 
interpretations of existing events since Moss and Ross (2011) that lends to a replacement of the 
Moss and Ross (2011) probability distributions. Information from 25 reverse and reverse-oblique 
events (Table 4.1) in the FDHI database (Sarmiento et al., 2021) was parsed and the vertical 
displacements were folded and binned in a similar manner as described above. Similar to Moss 
and Ross (2011), the displacement distributions of binned x/L data had best fits to the gamma 
and Weibull distributions. The gamma distribution (Equation 4.1) results for 𝐷𝐷/𝐴𝐴𝐴𝐴 and 
𝐷𝐷/𝑀𝑀𝑀𝑀 are presented below. Here the gamma distribution is using fitting parameters a (shape) 
and b (rate) with an example of the fit shown in Figure 4.2.  
 

𝑓𝑓(𝑧𝑧) =
𝑏𝑏𝑎𝑎

Γ(𝑎𝑎)
𝑧𝑧𝑎𝑎−1𝑒𝑒−𝑏𝑏𝑏𝑏                                                                    (4.1) 

 
Gamma distribution parameters for 𝐷𝐷/𝐴𝐴𝐴𝐴 for all FDHI reverse and reverse-oblique data are as 
follows (showing preferred values and 5% and 95% confidence level values in square brackets): 
 
    a = 2.54199   [2.34415, 2.75653]                                                                                           (4.2) 
    b = 0.393391   [0.359691, 0.430249] 
 
Gamma distribution parameters for 𝐷𝐷/𝑀𝑀𝑀𝑀 for all FDHI reverse and reverse-oblique data are as 
follows (preferred and 90% confidence interval values as above): 
 
    a = 2.11095   [1.94833, 2.28715]                                                                                           (4.3) 
    b = 0.180981   [0.165331, 0.198112] 
  
When using the gamma distribution, the first and second moments can be calculated from the 
distribution parameters as: 
 

Mean=a*b                                                                                                                       (4.4) 
Stdev=sqrt(a*b^2)   
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Figure 4.2.  D/AD (left) and D/MD (right) versus x/L scatter plot, frequency plot, and distribution fit for all 
FDHI events analyzed in this study. 
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Gamma distribution parameters as a function of x/L bins were treated as linear and are shown in Figures 
4.3 and 4.4.  The linear interpretation was used for lack of justification for a higher order fit (e.g., 
polynomial).   

 
Figure 4.3.  Gamma distribution parameter- a - for D/MD and D/AD. 

 
Figure 4.4.  Gamma distribution parameter- b - for D/MD and D/AD. 

 
 



15 
 

4.2  AVERAGE AND MAXIMUM VERTICAL DISPLACEMENT VS MAGNITUDE 

Our approach of using normalized displacements as a function of along-strike location (e.g., 
𝐷𝐷/𝑀𝑀𝑀𝑀(𝑥𝑥/𝐿𝐿)) to model displacement hazard requires compatible relationships for scaling the 
normalized values. Our approach is to follow established methodologies and use log-linear 
relationships between AD and MW and MD and MW (e.g., Wells and Coppersmith, 1994; Moss 
and Ross, 2011). In order to develop candidate AD and MD scaling models applicable to reverse 
and reverse-oblique styles of faulting, we updated earlier empirical databases (e.g., Moss and 
Ross, 2011) by reviewing rupture information in the FDHI database (Sarmiento et al., 2021) and 
recent literature. In addition to using empirical data, we examine a simple theoretical 
displacement-magnitude scaling relation as a check on the empirical results. Using this 
information, we develop criteria for distinguishing different classes of reverse surface-fault 
ruptures, and construct log-linear AD-MW and MD-MW models for these different classes.  

4.2.1 EMPIRICAL DATABASE AND SELECTION OF INTENSITY MEASURE 

Our empirical database contains 60 historical, global earthquakes with reverse or reverse-oblique 
styles of faulting that produced surface-fault rupture with reported AD and/or MD information 
(Table 4.1). All events have estimates of MW and MD, and 32 have estimates of AD. The 
primary sources of information for magnitudes and AD values are the FDHI database (25 events; 
Sarmiento et al., 2021) and Wells and Coppersmith (1994) (4 events). Most MD values are from 
the Lettis et al. (1997) compilation utilized by Moss and Ross (2011) (30 events) and the FDHI 
database (25 events). In all cases the AD or MD values from the FDHI database superseded the 
values used previously by Moss and Ross (2011). In addition, all 15 reverse earthquakes in the 
SURE 1.0 database (Baize et al., 2020) were reviewed and found to be also represented in the 
FDHI database. For these earthquakes in common, the MD and AD values in Table 4.1 are based 
on analysis of the FDHI database (instead of the SURE 1.0 database) because it is the more 
recent of the two and has more extensive documentation.  
 
For earthquake magnitudes, FDHI-reported values of MW are adopted for 24 or the 25 FDHI 
events in the database. The one exception is the magnitude estimated for the 31 August, 1896 
Rikuu, Japan earthquake. In our database, this event is assigned MW 7.2 based on the MJMA 7.2 
reported in current earthquake catalogs of Japan and an assumed ~1:1 conversion at this 
magnitude level (Utsu, 2002). This value is substantially higher than the MW 6.7 in the FDHI 
database but lower than the MW 7.4 listed for the earthquake by Moss and Ross (2011). The 
FDHI value is based on the Takao et al. (2013) reported moment magnitude value that is derived 
based on a linear magnitude conversion of MW = 0.78MJMA + 1.08. We infer this magnitude 
conversion equation to be applicable to a lower magnitude range than the Rikuu earthquake.  For 
earthquake magnitudes of other (non-FDHI) events, the MW values from Moss and Ross (2011) 
are adopted. Moss and Ross (2011) used the magnitude conversion equations from Heaton et al. 
(1986) to estimate MW from other reported magnitudes compiled by Wells and Coppersmith 
(1994), Lettis et al. (1997), and others.  
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Table 4.1. Database of Historical Reverse and Reverse-Oblique Earthquakes with 
Documented Surface-Fault Displacement 

Numbe
r Date Event Location MW AD1 

(m) 
MD1 
(m) Sources 

1 05/08/184
7 Zenkoji Japan 7.4  2.4 Lettis et al. (1997) 

2 08/31/189
6 Rikuu Japan 7.2 2.1 3.6 FDHI 

3 12/23/190
6 Manas China 7.9

5 
 5 Lettis et al. (1997) 

4 1/23/1909 Silakhar Iran 7.2
3 

 2.5 Lettis et al. (1997) 

5 1/3/1911 Chon Kemin Kyrgyzsta
n 

8.0
2 3.5 9.0 FDHI 

6 4/18/1911 Raver Iran 6.2
9 

 0.5 Lettis et al. (1997) 

7 5/1/1929 Baghan Iran 7.5
1 

 2.1 Lettis et al. (1997) 

8 6/17/1929 White Creek New 
Zealand 

7.8
9 

 5.2 Lettis et al. (1997) 

9 5/6/1930 Salmas Iran 7.6  5 Lettis et al. (1997) 

10 2/2/1931 Hawkes Bay New 
Zealand 

7.8
9 

 4.6 Lettis et al. (1997) 

11 12/25/193
2 Changma China 7.8

2 2.0 4.0 
Wells & Coppersmith 

(1994); Lettis et al. 
(1997)  

12 11/28/193
3 Behabad Iran 6.2

9 
 1.0 Lettis et al. (1997) 

13 4/21/1935 Tuntzhuchio Taiwan 7.2
3 

 3.0 Lettis et al. (1997) 

14 1/15/1944 San Juan Argentina 7.6  0.6 Lettis et al. (1997) 

15 1/13/1945 Mikawa-
Fukozu Japan 6.7 1.2 2.4 FDHI 

16 3/17/1947 Dari China 7.8
9 

 5.0 Lettis et al. (1997) 

17 7/21/1952 Kern County California
, USA 

7.3
6 0.42 1.2 FDHI 

18 2/12/1953 Torud Iran 6.6  1.4 Lettis et al. (1997) 

19 12/13/195
7 Farsinaj Iran 6.9

1 
 1.0 Lettis et al. (1997) 

20 9/1/1962 Ipak Iran 7.4
2 

 0.8 Lettis et al. (1997) 

21 5/24/1968 Inangahua New 
Zealand 7.1  0.52 Lettis et al. (1997) 
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Numbe
r Date Event Location MW AD1 

(m) 
MD1 
(m) Sources 

22 10/14/196
8 Meckering Australia 6.5

9 0.96 2.0 FDHI 

23 7/24/1969 Pariahuanca Peru 6.1  0.4 Lettis et al. (1997) 
24 10/1/1969 Pariahuanca Peru 6.6  1.2 Lettis et al. (1997) 

25 3/10/1970 Calingiri Australia 5.0
3 0.18 0.33 FDHI 

26 2/9/1971 San 
Fernando 

California
, USA 

6.6
1 0.47 1.0 FDHI 

27 4/10/1972 Qir Iran 6.8  0.1 Lettis et al. (1997) 

28 9/6/1975 Lice Turkey 6.6 0.5 0.6 
Wells & Coppersmith 

(1994); Lettis et al. 
(1997) 

29 1/1/1977 Mangya China 6.1  0.3 Lettis et al. (1997) 

30 9/16/1978 Tabas Iran 7.4 1.5 3.0 
Wells & Coppersmith 

(1994); Lettis et al. 
(1997) 

31 6/2/1979 Cadoux Australia 6.1 0.4 1.4 FDHI 

32 10/10/198
0 El Asnam Algeria 7.3 1.8 5.0 FDHI 

33 6/11/1981 Golbaf Iran 6.6  0.11 Lettis et al. (1997) 
34 7/27/1981 Sirch Iran 7.1  0.50 Lettis et al. (1997) 

35 6/11/1983 
Coalinga 

Nuñez 
aftershock 

California
, USA 5.4  0.64 Lettis et al. (1997) 

36 8/23/1985 Wuqai China 6.8
9 

 1.6 Wells & Coppersmith 
(1994) 

37 3/30/1986 Marryat 
Creek Australia 5.7 0.34 1.1 FDHI 

38 1/22/1988 

Tennant 
Creek 

(Kunayungk
u) 

Australia 6.2
7 0.39 0.9 FDHI 

39 1/22/1988 
Tennant 
Creek 
(LSW) 

Australia 6.4
4 0.58 1.1 FDHI 

40 1/22/1988 Tennant 
Creek (LSE) Australia 6.5

8 0.61 1.8 FDHI 

41 12/7/1988 Spitak Armenia 6.7
7 0.90 1.6 FDHI 

42 10/29/198
9 Chenoua Algeria 6.0  0.12 Lettis et al. (1997) 
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Numbe
r Date Event Location MW AD1 

(m) 
MD1 
(m) Sources 

43 12/25/198
9 Ungava Canada 6.0 0.80 1.8 

Wells & Coppersmith 
(1994); Lettis et al. 

(1997) 

44 6/20/1990 Rudbar-
Tarom Iran 7.4  1.0 Lettis et al. (1997) 

45 8/19/1992 Suusamyr Kyrgyzsta
n 7.2  4.2 Lettis et al. (1997) 

46 9/29/1993 Killari-Latur India 6.2 0.49 0.80 FDHI 

47 9/3/1998 Iwate 
(Inland) Japan 5.8 0.22 0.38 FDHI 

48 9/21/1999 Chi-Chi Taiwan 7.6
2 2.6 9.8 FDHI 

49 6/22/2002 Avaj Iran 6.5 0.7 0.8 Walker et al. (2005) 
50 2/22/2005 Zarand Iran 6.4  1.0 Talebian et al. (2006) 
51 10/8/2005 Kashmir Pakistan 7.6 1.5 7.1 FDHI 

52 10/10/200
7 Katanning Australia 4.7 0.17 0.3 King et al. (2019); 

Yang et al. (2021) 
53 5/12/2008 Wenchuan China 7.9 2.2 6.0 FDHI 

54 3/23/2012 Pukatja Australia 5.1
8 0.15 0.48 FDHI 

55 10/15/201
3 Bohol Philippine

s 7.1 1.4 5.2 FDHI 

56 11/22/201
4 Nagano Japan 6.2 0.48 1.2 FDHI 

57 5/20/2016 Petermann Australia 6.0 0.25 0.90 FDHI 

58 11/13/201
6 Kaikoura New 

Zealand 7.8 2.2 10.3 FDHI 

59 11/8/2018 Lake Muir Australia 5.3 0.28 0.75 King et al. (2019); 
Yang et al. (2021) 

60 11/11/201
9 Le Teil France 4.9 0.05 0.11 FDHI 

Notes: 
1. AD and MD values in bold are measures of vertical offset (vertical separation and/or scarp height). 
Values in italics are cases where the vertical offset value was not specifically provided, and these values 
may represent vertical offsets, some combination of vertical and horizontal displacement, or net 
displacements. 
 
All earthquakes in the database occurred in continental settings in both active deforming crust 
and stable continental crust. The earthquakes span the period 1847 to 2019 and range in 
estimated moment magnitude from MW 4.7 to 8.02 (Figure 4.5). Although the distribution is 
global, a full quarter of the events (15) are from Iran, and 11 are from Australia. The MD values 
for the earthquakes from Iran and Australia are indicated by circle and square symbols, 
respectively. Adding three earthquakes in Canada, France, and India to the 11 Australia 



19 
 

earthquakes, 14 events (23%) represent stable continental and/or low seismicity settings. A slight 
majority (31 of 60) are from active crustal settings other than Iran, with most of these from China 
(6), Japan (5), New Zealand (4), and USA (3; all California). 
 

 
 

Figure 4.5. MD and AD data vs moment magnitude in the reverse and reverse-oblique fault rupture 
database. MD values for earthquakes in Iran and Australia are indicated by an open circle and square, 
respectively. 

As discussed earlier in the report, our model approach is to use vertical displacement as the fault 
displacement intensity measure rather than net displacement. The decision to base our model on 
vertical displacement as the fault displacement intensity measure is based on our evaluation of 
available data, and in particular the meticulously documented data in the FDHI and SURE 1.0 
databases. For clarity, the values of vertical displacement being discussed here are more 
specifically field-based measurements of either vertical separation or fault scarp height, and 
either can differ from the vertical component of displacement based on the offset feature being 
measured (e.g., Caskey, 1995; Yang et al., 2015). The values of AD and MD in Table 4.1 that are 
in bold type represent the vertical displacement component, either as documented in the FDHI 
database or as specified in the literature (e.g., Lettis et al., 1997). Values in italics are 
displacement measures for which a vertical component was not specified or could not be 
verified. These values may represent vertical displacement or some combination of vertical and 
horizontal displacement components. We assume these unspecified values are a reasonable 
estimate of the vertical component and include them in our analyses. 
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The detailed compilation of field measurements provided in the FDHI database suggests that 
there are few reliable measurements of net surface fault displacement for reverse and reverse-
oblique earthquakes, in contrast to abundant measurements of vertical displacement (Table 4.2). 
Net displacement, of course, is a 3D vector consisting of orthogonal components of vertical 
displacement, fault-parallel horizontal displacement (right-lateral or left-lateral), and fault-
normal horizontal displacement (shortening or extension). For reverse faulting earthquakes, the 
fault-normal shortening in a surface-fault rupture is related to the near-surface fault dip, and for 
faults with an intermediate or gentle dip this component represents a substantial portion of the 
net displacement. For reverse-oblique earthquakes and some reverse earthquakes, the amount of 
fault-parallel lateral displacement may represent a non-trivial fraction of the total as well. 
Despite this recognition that the two horizontal components of displacement are important for 
understanding net displacement of reverse-faulting earthquakes, the majority of displacement 
observations in the FDHI database include a record of a vertical displacement component but no 
record of a lateral or shortening component. In these instances, it is unclear whether these 
horizontal displacement values were indeterminate (due to lack of offset markers) or observed to 
be minor but left undocumented.  
 

Table 4.2. Summary of number of principal displacement measures, displacement 
components, and ratios of vertical to net displacement where available.  

FDHI Event 

N, 
principal 

disp. 
measures1 

Vert. 
disp.2 

Fault-
parallel  
disp.3 

Fault-
normal 
disp.4 

3D 
(net) 
disp.5 

Ratio, 
vert to 2D 

disp.6 

Ratio, 
vert. to 

net disp.7 

Bohol 121 121 0 0 0 n/a n/a 
Cadoux 33 22 7 0 4 n/a 0.46 
Calingiri 27 21 6 0 0 n/a n/a 

Chi-Chi 218 217 127 90 0 0.84 
(0.11–1.0) 

0.66 
(n=88) 

(0.18–1.0) 
Chon Kemin 38 38 0 0 0 n/a n/a 

El Asnam 30 29 8 0 0 0.90 
(0.64–1.0) n/a 

Iwate (Inland) 32 32 10 0 0 
0.53 

(0.05 to 
0.86) 

n/a 

Kaikoura8 796 796 796 796 0 
0.73 

(0.24–
0.75) 

0.63 
(n=142) 
(0.23–
0.70) 

Kashmir 236 230 20 3 0 1.0 
(1.0–1.0) n/a 

Kern County 30 18 15 15 0 
0.64 

(0.07-
0.96) 

n/a 
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FDHI Event 

N, 
principal 

disp. 
measures1 

Vert. 
disp.2 

Fault-
parallel  
disp.3 

Fault-
normal 
disp.4 

3D 
(net) 
disp.5 

Ratio, 
vert to 2D 

disp.6 

Ratio, 
vert. to 

net disp.7 

Killari 10 8 3 0 0 0.95 n/a 
Le Teil 6 5 0 1 0 n/a n/a 
Marryat Creek 73 73 0 0 0 n/a n/a 

Meckering 61 45 26 0 9 
0.79 

(0.51-
0.98) 

n/a 

Mikawa-
Fukozu 68 59 26 0 0 0.91 

(0.71-1.0) n/a 

Nagano 96 81 1 63 0 
0.66 

(0.23-
0.99) 

n/a 

Petermann 83 83 0 0 0 n/a n/a 
Pukatja 26 26 0 0 0 n/a n/a 
Rikuu 15 15 1 0 0 0.0 n/a 

San Fernando 165 43 36 40 93 
0.63 

(0.31–
0.97) 

0.42 (n=5) 
(0.18–
0.66) 

Spitak 17 16 13 1 0 0.82 
(0.71–1.0) 0.55 (n=1) 

Tennant Creek 
1 17 16 1 0 0 n/a n/a 

Tennant Creek 
2 11 11 0 0 0 n/a n/a 

Tennant Creek 
3 36 35 0 0 1 n/a n/a 

Wenchuan9, 
SW, G1 26 24 13 0 0 0.74 

(0.27–1.0) n/a 

Wenchuan, 
SW, G2 120 119 16 0 0 0.41 

(0.0–0.85) n/a 

Wenchuan, 
Tear, G1 33 32 29 0 0 0.74 

(0.37–1.0) n/a 

Wenchuan, 
Tear, G2 136 136 28 0 0 

0.69 
(0.35–
0.92) 

n/a 

Wenchuan, 
FT, G1 36 36 14 0 0 0.87 

(0.57–1.0) n/a 

Wenchuan, 
FT, G2 32 32 0 1 0 0.87 n/a 

Wenchuan, 
MF, G1 13 13 4 0 0 0.86 n/a 
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FDHI Event 

N, 
principal 

disp. 
measures1 

Vert. 
disp.2 

Fault-
parallel  
disp.3 

Fault-
normal 
disp.4 

3D 
(net) 
disp.5 

Ratio, 
vert to 2D 

disp.6 

Ratio, 
vert. to 

net disp.7 

Wenchuan, 
MF, G2 4 4 2 0 0 0.94 n/a 

Wenchuan, 
NE, G1 91 91 54 0 0 0.68 

(0.04-1.0) n/a 

Wenchuan, 
NE, G2 44 44 14 0 0 

0.66 
(0.43-
0.86) 

n/a 

Notes: 
1. Number of principal displacement measurements in FDHI database. 
2. Number of vertical offset measurements. Most are vertical separation, but some are scarp height. 
3. Fault-parallel displacement measurements, defined as right-lateral or left-lateral. 
4. Fault-normal displacement measurements; most are shortening. 
5. Three-dimensional, or net, displacement measurements. The numbers listed here are for cases where the net displacement was recorded, 

but the component parts were not recorded in the database  
6. Ratio, vertical displacement to a 2D displacement. Vast majority of cases are of the 2D displacement consisting of a vertical and fault-parallel 

(lateral) component. A ratio of 0.71 indicates a 1:1 vertical to lateral displacement ratio. Values in italics are based on 4 measurements or 
fewer. 

7. Ratio, vertical displacement to the 3D (net) displacement. There are very few cases where both the vertical and net displacement are 
reported. The italicized values for the Cadoux earthquake are based on a reported vertical displacement near a reported 3D displacement; 
the result is therefore unreliable. 

8. The Kaikoura earthquake rupture was divided into 17 parts based on rupture pattern. The preferred values for the vertical displacement 
ratios shown are based on the four sections of the rupture that displayed a clear reverse displacement pattern; the range of ratios shown are 
based on the range of ratios calculated for each section; at a site-by-site scale, the range of vertical displacement ratios is much broader. 

9. The Wenchuan earthquake rupture was divided into four parts: the southwest (SW) section, the tear fault, the frontal thrust, the parallel 
rupture behind the frontal thrust, and the northeast (NE) section. Also, there are two sets of rupture measurements that were analyzed 
separately and then averaged: Group 1 (G1) used vertical separation as the vertical measure; group 2 (G2) used scarp height as the vertical 
measure.  

We recognize the non-trivial challenges of collecting post-earthquake offset measurements, 
especially offset measurements that capture the 3D net displacement vector. Fault-normal 
shortening is difficult to measure accurately in the field, as reverse fault scarps are commonly 
irregular and chaotic, bury the footwall piercing point, and often destroy the near-surface fault 
plane (e.g., McCalpin and Carver, 2009; Yeats et al., 1997). The fault-parallel horizontal 
component of surface displacement is also difficult to document for reverse events. Whereas 
vertically offset landforms and scarp faces are relatively common along reverse ruptures, clear 
lateral offset features are relatively rare, difficult to reconstruct, and often treated with secondary 
importance to a more imposing (and compelling) vertical offset feature. In addition, it is 
uncommon for field reports to record zero or minimal lateral offset along reverse earthquake 
ruptures unless the field investigators are particularly thorough.  
 
A review of the FDHI database for the 25 reverse and reverse-oblique ruptures demonstrates that 
there are insufficient data to calculate net MD or AD for most of the events (Table 4.2), 
consistent with the known challenges to field data collection described above. Only two 
ruptures—the 1999 Chi-Chi and 2017 Kaikoura—have sufficient detail in measured 
displacement components such that a reliable estimate of net displacement may be calculated; 
the 1972 San Fernando earthquake may represent a third. Based on such incomplete 
documentation of a lateral component of slip (even if documenting a zero value), and a very low 
number of shortening measurements, we suspect that many surveys of historical earthquake 
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ruptures that report “net” displacements are more likely reporting just the vertical component or 
perhaps vertical and lateral only (but not shortening). Thus, we interpret the values for AD and 
MD in italics in Table 4.1 to be reasonable estimates of vertical displacement, and probably a 
closer estimate of vertical displacement than the 3D net displacement. 
 
Using information from the Chi-Chi rupture plus sections of the Kaikoura rupture that had a 
dominant reverse component, we calculate average ratios of vertical displacement to net 
displacement of 0.63 (Kaikoura rupture, reverse-dominated sections) and 0.66 (Chi-Chi rupture). 
The point-specific variability in the vertical displacement to net displacement ratio varies from 
less than 0.2 to 1.0. A few other opportunities where the net displacement was measured suggest 
vertical to net ratio values of approximately 0.4 to 0.6. From these limited examples, we suggest 
a general approximation for converting vertical displacements to net displacements: 
 

ADV ~ 0.6 × ADNET      (4.1) 
 

where ADV is the average vertical component of displacement and ADNET is the average net 
displacement for reverse and reverse-oblique faulting. For a general idea, the ratio value of 0.6 is 
consistent with a near-surface dip angle of approximately 40 degrees and a horizontal to vertical 
(H:V) displacement ratio of approximately 0.5. We emphasize that the variability of this ratio for 
any one earthquake rupture and at any point along a rupture is high and should be considered in 
any analysis. 
 
There are many more opportunities to estimate the ratio of vertical displacement to a 2D 
displacement (combination of vertical and one horizontal displacement) (Table 4.2). These 
ratios, which generally range in rupture averages of about 0.6 to 0.9, represent maximum values 
for the ratio of vertical to net displacement. As these 2D displacements are mostly combinations 
of vertical and lateral displacement, this range in 2D ratios is consistent with H:V displacement 
ratios of 0.5 to 1.3.  
 
With a focus on the fault displacement intensity measure of vertical displacement, values of 
MDV were compiled and values of ADV were calculated from the FDHI database and entered in 
Table 4.1. We hereafter use MDV and ADV when specification of the vertical component is 
important to distinguish from the net displacements. Otherwise, the terms MD and AD (no 
subscript) are used with the implied specification of the vertical component for our model.  
The procedure used to harvest values from the FDHI database is as follows. First, data were 
filtered for principal and “cumulative” displacements only (distributed displacements and “total” 
displacements were removed). Measurements with a use recommendation of “Toss” were 
removed, such that records either judged “keep” or “check” were considered. If a preferred value 
is entered, the preferred value is considered. If no preferred value is provided, but a range (i.e., 
min and max) is recorded, the midpoint of the two is used, if available, and if only one bounding 
value is provided that value is considered after specific review. For each event, the maximum 
vertical amount (either scarp height or vertical separation) was used for the event MDV.  
The method for calculating ADV from the FDHI data is less straightforward. First, data were 
filtered to preclude distributed displacement measurements, total measurements, and “Toss” 
records as described above for MDV. For each record of either vertical separation (VS) or scarp 
height (SH), a preferred value is noted, if available. If there is no preferred value but a range is 
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provided, the midpoint of the two is noted. If only one bounding value is provided, that value is 
considered after specific review. Next, the spatial distribution of points is examined as well as 
rupture complexity such that data are grouped into separate sections. If the spatial distribution is 
generally uniform, all data are within one group. For more complex ruptures such as the 2008 
Wenchuan and 2016 Kaikoura earthquakes, measurements are grouped by part of the rupture 
(e.g., Wenchuan contained a SW section, a Tear Fault section, a Frontal Thrust section, and 
Parallel Thrust section, and a NE section; Table 4.2). Within each group, the arithmetic mean of 
the vertical displacements is calculated. Our decision to use the arithmetic mean of the 
displacements—as opposed to the geometric mean or median—is based on our interpretation that 
most non-FDHI records of AD are closer to measures of the arithmetic mean, and thus the 
arithmetic mean provides the most consistent measure when combined with non-FDHI data. The 
arithmetic mean value of each group is combined with the other groups within each earthquake 
rupture by weighting based on the rupture length of the group as a fraction of the total rupture 
length.  
 
The final database in Table 4.1 includes 32 values of AD and 60 values of MD. These data are 
plotted in Figure 4.5. All records have estimates of MW, but other details such as rupture width, 
fault dip, nucleation depth, etc. have not been compiled. We have not compiled alternative 
estimates of MW, MD, AD, nor have we developed quality (reliability) ratings for the different 
events. Implicit in the compilation is an assumption that there are no systematic errors in MW, 
MD, or AD estimates across the database or systematic correlated errors between parameters.  
 

4.2.2 DISPLACEMENT SCALING RELATIONS 

A key objective of the MD & AD database is to derive empirical relations between MD or AD 
and MW that can be used to scale the normalized displacements (D/MD or D/AD) that have 
model distributions as a function of x/L. As our primary application is hazard assessment for 
engineering evaluation, an objective of the final models is that they are provided with 
appropriate context regarding the earthquakes used to derive the model parameters and the 
underlying assumptions or interpretations of the data. Ideally, alternative models are presented, 
each with clear documentation of the criteria underlying the data selection process and intended 
applicability of the model.  
 
As will be described below, we interpret several earthquakes in the database to have produced 
surface displacements that are much lower than would be expected given their magnitude, even 
accounting for natural variability. These events are named “incomplete” surface ruptures in 
contrast with “complete” surface ruptures that have displacements that scale more as expected 
given their moment magnitude. Our goal is to identify “incomplete” surface rupture events, filter 
them, and develop a set of ADV-MW and MDV-MW models based only on “complete” ruptures. 
We also develop models that incorporate the “incomplete” events, acknowledging that in the vast 
majority of examples the underlying data are unlikely to be flawed, and therefore the 
“incomplete” events represent physical examples of surface-fault displacements from reverse 
earthquakes. However, until it is better understood whether a particular tectonic setting, crustal 
fault geometry, etc. is associated with much-lower-than expected displacements, it is desirable 
for engineering applications to have a more conservative model available for consideration. 
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Conservatism in this case applies both to estimates of median scaling and the variability about 
the median. Even if the data indicating much-lower-than expected surface displacements are 
judged to be reliable, it is another question as to whether such data should be included in a 
regression to be used in hazard. Although it is current standard practice to develop mean-
centered models with clear documentation of uncertainties and allow engineering design criteria 
and/or stakeholder decision-making to determine the appropriate hazard level for evaluation, it is 
also not reasonable to develop empirical models based on data that are not representative of the 
phenomena the model purports to capture. If a fault under investigation for a site-specific FDHA 
demonstrates geomorphic or geologic evidence of recent, relatively large surface-fault ruptures, 
for example, then an empirically-based model ideally is developed based on examples of past 
“complete” surface-fault rupture that have occurred on similar faults. 
 
By inspection of Figure 4.5, there are a few data outliers that require some consideration as to 
whether they should be considered “incomplete” ruptures and filtered out for additional analysis. 
Several MD datapoints appear to have much lower than expected values, including the MD 
measurements that plot below AD values of comparable MW. In particular, there are four values 
that have MD < 0.2 m, only one of which is associated with an earthquake MW < 5.0. From our 
review of these examples, it seems highly likely that these low MD values are based on reliable 
measurements, and that more modern post-earthquake surveys would likely resolve different 
values but not change the MD estimates by an order of magnitude or even a factor of 4.  

4.2.3 AD VS MAGNITUDE SCALING, INITIAL ANALYSIS 

The AD data span a magnitude range of MW 4.7 (Katanning, Australia) to MW 8.02 (Chon 
Kemin, Kyrgyzstan) and a vertical displacement range of 0.05 m (2019 Le Teil, France) to 3.5 m 
(1911 Chon Kemin, Kyrgyzstan) (Figure 4.6). There are 11 AD values from Australia, which 
represent the vast majority of events in the 4.5 < MW <6.7 range (indicated by boxes in Figure 
4.6). The country with the next-highest number of events in the database is Japan (4 AD values; 
indicated by diamonds in Figure 4.6), which span a magnitude range of MW 5.8 to 7.2. The data 
show a generally linear trend across the magnitude range for the log of the displacements, and 
we fit an initial least-squares linear regression to the entire dataset. Following Wells and 
Coppersmith (1994) and others, we report results in the form: 
 

log10 𝐴𝐴𝐴𝐴 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑠𝑠𝑠𝑠,     (4.2) 
 

where 𝑎𝑎 and 𝑏𝑏 are the intercept and slope of the best-fit regression line, respectively, 𝑚𝑚 is 
magnitude in the moment magnitude scale, 𝑠𝑠 is the standard error in the log10 𝐴𝐴𝐴𝐴 value, which 
we take here to be equivalent to the standard deviation, and 𝜑𝜑 represents the standard normal 
probability density function. 
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Figure 4.6. Log-linear plot of AD vs MW for the 32 reverse and reverse-oblique faults in the database. 
Australia and Japan events indicated by symbols. 

  
The results of the initial fit to the 32 datapoints yields values of 𝑎𝑎 = −2.98 , 𝑏𝑏 = 0.427, and 𝑠𝑠 =
0.18. The preferred and ± 1s lines show a reasonable fit, with residuals being approximately 
equally distributed above and below the average line across all magnitudes (Figure 4.7). 
 

 
 

Figure 4.7. AD vs MW data with preferred least-squares linear regression line (solid) and ± 1 standard 
error lines (dashed).  
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The empirical AD data are also compared to a theoretical average displacement for dip-slip 
faults, which we will indicate as 𝐷𝐷�. To estimate 𝐷𝐷�, we combine the definition of MW by Hanks 
and Kanamori (1979): 
 

log10 𝑀𝑀0 = 3
2

MW +9.05      (4.3) 
 

where seismic moment M0 is in N·m, with the definition of 𝑀𝑀0: 
 

𝑀𝑀0 = 𝜇𝜇𝜇𝜇𝐷𝐷�                                        (4.4) 
 

where 𝜇𝜇 is the shear modulus, A is rupture area, and 𝐷𝐷� is the average displacement on the rupture 
plane. Substituting the seismic moment definition into equation (4.3) and rearranging, we get: 
 

log10 𝜇𝜇 + log10 𝐴𝐴 + log10 𝐷𝐷� =  3
2

MW +9.05.    (4.5) 
 

The value of 𝜇𝜇 may be treated as a constant, with commonly estimated values of approximately 
3.0–3.3 × 1010 N/m2. Also, we recognize that the constant in the moment magnitude definition is 
also commonly stated as 9.1 instead of 9.05 based on Kanamori (1977), and our decision to show 
9.05 instead of 9.1 in Equation 4.3 is somewhat arbitrary. The difference in the moment 
magnitude definition constant and difference in estimated 𝜇𝜇 using values noted above results in a 
maximum impact of about 10% on estimated 𝐷𝐷�, which is small and is implicitly contained within 
our final estimation of MW-𝐷𝐷� uncertainty. We continue with the constant of 9.05 and a value 𝜇𝜇 =
3.0𝑥𝑥1010 𝑁𝑁/𝑚𝑚2 as that combination is centered reasonably well within the range of constant and 
𝜇𝜇 combinations and is nearly identical to a combination of 9.1 and 𝜇𝜇 = 3.3𝑥𝑥1010 𝑁𝑁/𝑚𝑚2 used by 
Leonard (2010).  
 
Using the simple scaling arguments and empirical analysis by Leonard (2010) for dip-slip 
faulting, where log10 𝐴𝐴 ∝ MW, we can use the Leonard (2010) relationship: 
 

MW = log10 𝐴𝐴 − 2.0 + 𝑠𝑠𝑠𝑠,     (4.6) 
 

where A is in m2, and 𝑠𝑠 and 𝜑𝜑 are the same as described for Equation 4.2. We estimate 𝑠𝑠, the 
standard deviation in MW from A, to be approximately 0.1–0.2 based on examination of the 
literature and alternative proposed models (Wells and Coppersmith, 1994; Hanks and Bakun, 
2002; 2008; 2014; Ellsworth, 2003; Leonard, 2010; Shaw, 2009; 2013). For fun and to 
incorporate uncertainties discussed above, we define a “useful” estimate of the standard 
deviation 𝑠𝑠𝑢𝑢 = 0.2 in the analysis. Rearranging, substituting in the prior equation, and adopting 
𝜇𝜇 = 3.0𝑥𝑥1010 𝑁𝑁/𝑚𝑚2, the relation between 𝐷𝐷� and MW is:  
 

log10 𝐷𝐷� = 0.5MW − 3.43 + 0.2𝜑𝜑.     (4.7) 
 

The scaling-based 𝐷𝐷� with ± 1 𝑠𝑠𝑢𝑢 is plotted along with the vertical surface AD data in Figure 4.8. 
The prediction is that 𝐷𝐷� would be comparable to, but slightly higher than, the AD data for 
“complete” surface ruptures given our use of ADV for the FDHI events and our interpretation 
that most other empirical AD data are based on vertical displacements and not net displacement. 
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Slightly higher 𝐷𝐷� values also would be consistent with a proposed shallow slip deficit (e.g., 
Fialko et al., 2005; Xu et al., 2016; cf. Marchandon et al., 2021), whereby localized surface fault 
displacement is estimated to be less than the displacement at seismogenic depths (Dolan and 
Haravitch, 2014). In contrast, Figure 4.8 shows the theoretical 𝐷𝐷�-MW model to provide a 
reasonable fit to the ADV data, and several earthquakes at the lower magnitudes (all events with 
MW < 5.5) show measured vertical ADV values greater than those predicted by the model at the 
+1 𝑠𝑠𝑢𝑢 level.  
 
 

 
 

Figure 4.8. AD vs MW data with a theoretical log displacement-magnitude relation. 

 
Plots of the data residuals to the two regressions (Figure 4.9) show reasonably unbiased results, 
with the residuals of the scaling-based relation showing the slight negative slope with magnitude 
that reflects the difference between the slope of the empirical regression (0.427) and the slope of 
the scaling-based equation (0.5). The empirical regression has a coefficient of determination (R2) 
of 0.83, a residual sum of squares of 0.981, and a residual standard error (again -- assumed 
equivalent to the regression standard deviation) of 0.18. In comparison, the scaling-based 
equation has an R2 value of 0.80, a residual sum of squares of 1.15, and an equivalent residual 
standard error (using the same n-2 = 30 degrees of freedom as the empirical regression) of 0.20. 
Given uncertainties in the MW and AD values in the database, we consider both models to be 
useful for purposes of further data evaluation. 
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Figure 4.9. Plots of residuals of log10AD data to (a) the least-squares regression, and (b) the scaling-
based regression. 

We note that the event with the largest absolute residual in both regressions is the 1952 MW 7.36 
Kern County, California earthquake (Oakeshott, 1955). This earthquake, which ruptured the 
White Wolf fault at the southern margin of California’s Central Valley, has long been recognized 
for the unusual surface-fault rupture (Buwalda and St. Amand, 1955), which included a blind 
rupture along its southwest portion (no surface rupture) and surface displacements much lower 
than expected given the earthquake magnitude and calculated displacement at depth (e.g., 
Bawden, 2001).   
 
Another useful piece of information for evaluating whether certain AD or MD values in the 
database represent incomplete ruptures, and for evaluating whether certain values are 
problematic and may be of poor quality, is the evaluation of the ratio of MD to AD. This ratio is 
a simple measure of the variability of surface displacements about the average, although focused 
on the upper half of the displacement distribution. Figure 4.10 shows MD/AD versus MW for the 
32 reverse and reverse-oblique earthquakes in the database, with the solid line indicating the 
median value and dashed lines indicating the 10th and 90th percentile values.  
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Figure 4.10. MD/AD ratios of the 32 events vs moment magnitude. Median ratio shown as a solid line, 
and 10th and 90th percentile ratios are dashed lines. 

 The plot shows no apparent relation between MD/AD and magnitude, and most of the data 
(between 10th and 90th percentiles) indicate a ratio of 1.7 to 3.7. The median value is 2.3. These 
results are generally similar to the findings of Wells and Coppersmith (1994) who point to a 
general rule of thumb that MD is approximately two times AD. Surface-fault ruptures with ratios 
close to 1 are unexpected, as these indicate little displacement variability and maximum 
displacements that are close to the average displacement. The events with the two lowest 
MD/AD ratios in Figure 4.10 are the 2002 MW 6.5 Avaj, Iran earthquake (AD = 0.7 m; MD = 0.8 
m) and the 1975 MW 6.6 Lice, Turkey earthquake (AD = 0.5 m; MD = 0.6 m) (Table 4.1). The 
two events with the highest MD/AD are the 2005 MW 7.6 Kashmir, Pakistan earthquake (AD = 
1.5 m; MD = 7.1 m) and the 2016 MW 7.8 Kaikoura, New Zealand earthquake (AD = 2.2 m; MD 
= 10.3 m) (Table 4.1). Although the Avaj and Lice earthquakes are not in the FDHI database, 
and therefore little analysis is available as to the thoroughness of the field surveys, the Kashmir 
and Kaikoura events are in the FDHI database and are well reviewed and vetted. Although one 
interpretation is that the AD and MD estimates for the Avaj and Lice earthquakes are unreliable, 
an alternative is that the low MD/AD ratios may be an attribute of an incomplete surface rupture, 
in that the up-dip rupture extent included the ground surface but perhaps not sufficiently to 
reflect the displacement variability and/or absolute amounts that occurred at depth. We note that 
at this point we are not filtering any events based on MD/AD from use for log D - MW scaling 
relations, but rather the intention is to explore the average and range of MD/AD ratios as 
indicators of the expected natural variability for a complete rupture.   
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4.2.4 EVALUATING MD DATA FOR INCOMPLETE 

The empirical and scaling-based log10AD - MW relations, combined with estimates of MD/AD, 
are used to evaluate the broader MD database and identify outlier events that are candidates for 
“incomplete” ruptures.  To restate our objective, we want to develop log10AD-MW and log10MD - 
MW models useful for predicting displacements that are representative of “complete” reverse or 
reverse-oblique surface-fault rupture, which we informally define as earthquakes producing 
surface displacements that are generally comparable to displacements over the full rupture plane 
at depth. Separately, we can also develop models based on the events interpreted as producing 
“incomplete” surface-fault ruptures such that practitioners can have the flexibility to include a 
combination of models in a weighted logic-tree approach. 
 
Figure 4.11 is a log-linear plot of log10MD vs MW for the 60 reverse and reverse-oblique events in the 
database. Also shown are solid and dashed lines representing the empirical log10 𝐴𝐴𝐴𝐴 −MW and scaling-
based log10 𝐷𝐷� − MW relations. Events with estimated vertical MD values that plot below and near the 
predicted average displacement lines are suspected of representing incomplete ruptures according to 
our general definition. However, our goal is to develop a mean-centered model for complete ruptures, 
and therefore we need to consider cases where AD is below average but still “complete.”   
 
 

 
 

Figure 4.11. Estimated vertical MD vs MW data showing alternative relations for average displacement. 
MD values that plot below the predicted AD lines are candidates for incomplete surface-fault rupture. 
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For filtering criteria, we only want to exclude events where the MD is less than expected even 
for cases of a below-average AD (but still within an expected range for a “complete” rupture). 
To do this, we consider two criteria. First, we evaluate predicted 𝐷𝐷� and AD values at the -1 
standard deviation level, using our estimated “useful” standard deviation of 𝑠𝑠𝑢𝑢 = 0.2 for the 
theoretical 𝐷𝐷� model and 𝑠𝑠𝐴𝐴𝐴𝐴 = 0.18 for the empirical AD model. Second, we assume the 
MD/AD ratio is not less than a factor of 1.7 (the 10th percentile value from the dataset; Figure 
4.10), which retains a minimum of expected rupture variability between AD and MD. Events 
failing these criteria are flagged as incomplete and removed from the regression analysis for 
complete ruptures. 
 
Our criteria for characterizing an event as an incomplete rupture uses a minimum threshold line 
defined by the -1 s AD regression prediction (noted as AD(-1s)) times a 1.7 MD/AD value 
(representing the 10th percentile in the MD/AD dataset; Figure 4.10). These criteria allow for 
lower than average “complete” displacements with an also below-average upper tail variability 
(indicated by MD/AD). Figure 4.12 shows the MD values above the threshold values as solid 
blue circles and the MD values below the threshold as open blue circles. Of the 60 events, 15 are 
interpreted as incomplete based on these criteria. These events span a range of magnitudes from 
MW 4.9 to MW 7.6 and represent a range of tectonic environments from low seismicity areas 
(e.g., Le Teil, France) to active deforming areas (e.g., Kern County, California). For reference, 
we also show in a gray dash-dot line a threshold based on the 𝐷𝐷�(-1s) regression line and the 
minimum 1.7 MD/AD value. Adopting this as the main threshold criterion line would have 
added one additional earthquake to the “incomplete” category, but overall the results using this 
alternative average displacement relation are similar.   
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Figure 4.12. MD data and interpretations of complete (solid circle) or incomplete (open circle) reverse 
and reverse-oblique ruptures based on the AD(-1s) and MD/AD>1.7 criteria line (in purple). For 
reference, a similar threshold line derived from the scaling-based D-bar(-1s) relation is shown in gray. 

   
Of the 15 earthquake ruptures that are classified as incomplete based on analysis of their MD 
values, three have estimated values of AD that are used in the AD regression. These three 
earthquakes are the 1952 Kern County, California, 1975 Lice, Turkey, and 2019 Le Teil, France 
events. The Kern County and Le Teil earthquakes had the highest absolute residuals in the 
analysis of log10AD vs MW (Figure 4-5), and the Lice earthquake was one of two events with a 
suspiciously low value of MD/AD (Figure 4-6). In the case of the Le Teil earthquake, the AD 
and MD values are from very precise measurements of surface rupture by Ritz et al. (2020), so 
the displacement values are well constrained and documented (Sarmiento et al., 2021). 
Importantly, Ritz et al. (2020) show greater amounts of vertical deformation distributed over a 
broad (10s to 100s of meters wide) zone in the hanging wall based on differential InSAR 
analysis. If the broad aperture folding plus fault deformation are considered, the MDV for this 
event is 0.23 m and the ADV is closer to 0.12 m. These values would be more aligned with a 
complete earthquake rupture. This finding indicates that at least some of the events interpreted as 
having incomplete surface-fault ruptures may have total vertical displacements that scale with 
“complete” ruptures, but a significant fraction of the total vertical deformation is distributed as 
broader folding rather than as localized surface-fault rupture. 
 
Given the classification of the Kern County, Lice, and Le Teil earthquake ruptures as 
incomplete, we re-run the least-squares linear regression analysis of log10AD vs MW with these 
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events removed from the empirical dataset. Figure 4.13 shows the revised AD regression line 
based on the 29 earthquakes with estimated AD and interpreted as having complete ruptures. The 
new regression has intercept, slope, and regression standard error values of 𝑎𝑎 = −2.87, 𝑏𝑏 =
0.416, 𝑠𝑠 = 0.13. Also shown in Figure 4.13 are the median regression line using all 32 AD 
records and the scale-based median D-bar line. The plot shows strong similarity to the initial AD 
regression, with the main differences being a slight lowering of the slope and a reduction in the 
regression standard error.  
 

 
 

Figure 4.13. Revised Vertical AD vs MW data and regression results. For comparison are the initial AD 
regression line (purple dotted) and the scaling-based D-bar line (gray dashed). 

The filetered dataset of 29 “complete” earthquakes with AD and MD were used to re-evaluate 
the MD/AD values. The updated median and 10th percentile values of MD/AD are unchanged 
(2.3 and 1.7, respectively), although the 90th percentile value increased from 3.7 to 3.9. Applying 
the same threshold criteria for a “complete” vs “incomplete” MD rupture using the same 
threshold criteria (-1 s AD and MD/AD = 1.7) using the revised AD regression identifies three 
additional events with MD values defined as “incomplete”: The 1998 Iwate (Inland), Japan, the 
1929 Baghan, Iran, and the 2002 Avaj, Iran earthquakes. The final MD dataset of complete 
ruptures therefore has N = 42 events, with N = 18 events classified as “incomplete”. Although 
the Iwate and Avaj earthquakes include estimates of AD, we decided to not perform another 
iteration of the log10AD - MW regression with these additional events removed.  
 
Table 4.3 lists the events in order of the ratio between the MD value and the -1s AD value 
predicted based on the final log10AD - MW regression. The MD/AD(-1s) threshold of 1.7 is 
indicated by the thick line and rows with text noting the change from “complete” to 
“incomplete” ruptures.  
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Table 4.3.  Earthquakes in the database in order from highest to lowest ratio between 
measured MD and predicted AD (-1s).  

Number Date Event Location MW AD, 
m 

MD, 
m 

Ratio, MD / predicted 
AD,-1s 

48 9/21/1999 Chi-Chi Taiwan 7.62 2.6 9.8 6.73 

58 11/13/2016 Kaikoura New Zealand 7.8 2.2 10.3 5.96 

55 10/15/2013 Bohol Philippines 7.1 1.4 5.2 5.90 

43 12/25/1989 Ungava Canada 6.0 0.80 1.8 5.84 

51 10/8/2005 Kashmir Pakistan 7.6 1.5 7.1 4.94 

59 11/8/2018 Lake Muir Australia 5.3 0.28 0.75 4.76 

32 10/10/1980 El Asnam Algeria 7.3 1.8 5.0 4.67 

37 3/30/1986 Marryat Creek Australia 5.7 0.34 1.1 4.63 

45 8/19/1992 Suusamyr Kyrgyzstan 7.2  4.2 4.32 

5 1/3/1911 Chon Kemin Kyrgyzstan 8.02 3.5 9.0 4.22 

31 6/2/1979 Cadoux Australia 6.1 0.4 1.4 4.13 

15 1/13/1945 Mikawa-Fukozu Japan 6.7 1.2 2.4 4.01 

2 08/31/1896 Rikuu Japan 7.2 2.1 3.6 3.70 

35 6/11/1983 Coalinga aftershock 
- Nuñez California, USA 5.4  0.64 3.69 

22 10/14/1968 Meckering Australia 6.59 0.96 2.0 3.69 

9 5/6/1930 Salmas Iran 7.6  5.0 3.50 

54 3/23/2012 Pukatja Australia 5.18 0.15 0.48 3.41 

52 10/10/2007 Katanning Australia 4.7 0.17 0.30 3.38 

40 1/22/1988 Tennant Creek (LSE) Australia 6.58 0.61 1.8 3.35 

53 5/12/2008 Wenchuan China 7.9 2.2 6.0 3.15 

56 11/22/2014 Nagano Japan 6.2 0.48 1.2 3.08 

13 4/21/1935 Tuntzhuchio Taiwan 7.23  3.0 3.00 

57 5/20/2016 Petermann Australia 6.0 0.25 0.90 2.92 

8 6/17/1929 White Creek New Zealand 7.89  5.2 2.76 

25 3/10/1970 Calingiri Australia 5.03 0.18 0.33 2.71 

16 3/17/1947 Dari China 7.89  5.0 2.65 

18 2/12/1953 Torud Iran 6.6  1.4 2.56 

30 9/16/1978 Tabas Iran 7.4 1.5 3.0 2.55 

3 12/23/1906 Manas China 7.95  5.0 2.50 

4 1/23/1909 Silakhar Iran 7.23  2.5 2.50 

41 12/7/1988 Spitak Armenia 6.77 0.90 1.6 2.48 

12 11/28/1933 Behabad Iran 6.29  1.0 2.46 

10 2/2/1931 Hawkes Bay New Zealand 7.89  4.6 2.44 

39 1/22/1988 Tennant Creek 
(LSW) Australia 6.44 0.58 1.1 2.40 

11 12/25/1932 Changma China 7.82 2.0 4.0 2.27 

38 1/22/1988 Tennant Creek 
(Kunayungku) Australia 6.27 0.39 0.90 2.25 

36 8/23/1985 Wuqai China 6.89  1.6 2.21 
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Number Date Event Location MW AD, 
m 

MD, 
m 

Ratio, MD / predicted 
AD,-1s 

50 2/22/2005 Zarand Iran 6.4  1.0 2.21 

24 10/1/1969 Pariahuanca Peru 6.6  1.2 2.19 

46 9/29/1993 Killari-Latur India 6.2 0.49 0.80 2.14 

1 05/08/1847 Zenkoji Japan 7.4  2.4 2.04 

26 2/9/1971 San Fernando California, USA 6.61 0.47 1.0 1.81 

Complete ruptures (above) 

Incomplete ruptures (below) 

49 6/22/2002 Avaj Iran 6.5 0.70 0.80 1.61 

7 5/1/1929 Baghan Iran 7.51  2.1 1.60 

47 9/3/1998 Iwate (Inland) Japan 5.8 0.22 0.38 1.49 

19 12/13/1957 Farsinaj Iran 6.91  1.0 1.36 

6 4/18/1911 Raver Iran 6.29  0.50 1.23 

23 7/24/1969 Pariahuanca Peru 6.1  0.40 1.18 

28 9/6/1975 Lice Turkey 6.6 0.50 0.60 1.10 

17 7/21/1952 Kern County California, USA 7.36 0.42 1.2 1.08 

60 11/11/2019 Le Teil France 4.9 0.05 0.11 1.02 

29 1/1/1977 Mangya China 6.1  0.30 0.88 

44 6/20/1990 Rudbar-Tarom Iran 7.4  1.0 0.85 

20 9/1/1962 Ipak Iran 7.42  0.80 0.67 

21 5/24/1968 Inangahua New Zealand 7.1  0.52 0.59 

34 7/27/1981 Sirch Iran 7.1  0.50 0.57 

14 1/15/1944 San Juan Argentina 7.6  0.60 0.42 

42 10/29/1989 Chenoua Algeria 6.0  0.12 0.39 

33 6/11/1981 Golbaf Iran 6.6  0.11 0.20 

27 4/10/1972 Qir Iran 6.8  0.10 0.15 

 

4.2.5 MD VS MAGNITUDE SCALING 

A plot of the MD data with three sets of linear regression lines is in Figure 4.14. Ruptures 
interpreted as complete are shown in solid circles; incomplete ruptures are open circles. A least-
squares linear regression of log10MD – MW based on the N = 42 complete ruptures yields 
intercept, slope, and regression standard error values of 𝑎𝑎 = −2.50, 𝑏𝑏 = 0.415, 𝑠𝑠 = 0.15.  This 
regression has an R2 = 0.87. The median MD line is shown in Figure 4-10 as a solid line, with 
the ± 1 s values shown as dotted lines. A least-squares linear regression using the N = 18 
incomplete ruptures yields values of 𝑎𝑎 = −2.71, 𝑏𝑏 = 0.354, 𝑠𝑠 = 0.30, with an R2 = 0.42. 
Although this R2 value is low, we consider this relation to be useful to represent epistemic 
uncertainty for surface displacement hazard for some reverse faults, particularly in cases where 
distributed surface folding is more expected. If the incomplete rupture regression parameters are 
used, we recommend that practitioners account for the “remaining” deformation, at least 
qualitatively (e.g., expected distributed deformation over a hanging-wall fold). Also, a least-
squares linear regression for the entire 60 events with estimated MD yields values of 𝑎𝑎 =
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−2.73, 𝑏𝑏 = 0.422, 𝑠𝑠 = 0.35, with an R2 of 0.50. Whereas we present these results for 
completeness, our guidance would be to not use this in a logic tree, but rather consider weighted 
combinations of the complete and incomplete models.  
 

 
 

Figure 4.14. Vertical MD vs MW showing final interpretation of complete ruptures (solid circles; N = 42) 
and incomplete ruptures (open circles; N = 18). Least-squares linear regression lines for complete 
ruptures shown in dark gray (solid for median; dotted for ± 1s). Least-squares linear regression lines for 
incomplete ruptures shown in gold (solid for median; dotted for ± 1s). The median least-squares linear 
regression line fit to the whole MD dataset shown in green dash-dot-dot pattern. 

Table 4.4 summarizes the recommended regression parameters for reverse and reverse-oblique 
earthquakes based on our evaluation. Note we provide precise results for the regression a, b, and 
s parameters, and also provide recommended values that include rounding and increases in s. The 
increases in s in particular are important to consider as displacement-magnitude regressions have 
been shown to be highly dependent on the dataset (e.g., Wells and Coppersmith, 1994; Moss and 
Ross, 2011; Wesnousky, 2008) and it is desirable that uncertainties applied to these models 
capture changes to regressions based on future events. Further reduction of uncertainties in the 
future can be based on larger and/or better filtered datasets. We note the values of s calculated 
from earlier studies (e.g., Wells and Coppersmith, 1994) were on the order of 0.3 to 0.4 and this 
analysis suggests they have been appropriately reduced based on additional data. 
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Table 4.4. Recommended parameter values for log-linear relations between vertical AD 
or vertical MD and moment magnitude for reverse and reverse-oblique 
surface-fault ruptures. Regression parameters and R2 values at higher decimal 
places shown in parentheses. Parameters are for the form log10(D) = a + bm, 
with standard error of the regression s. 

Name AD or 
MD a b s R2 s,  

recommended Notes 

Empirical AD, 
complete 

only (n=29) 
AD -2.87 0.416 0.133 0.89 0.2 

Recommend for estimating 
AD assuming complete 

ruptures 
Empirical AD, 

all data 
(n=32) 

AD -2.98 0.427 0.181 0.83 0.25 
Alternative AD regression 
parameters to consider; 

captures all reverse ruptures 

Empirical MD, 
complete 

only (n=42) 
MD -2.50 0.415 0.148 0.87 0.2 

Recommend for estimating 
MD assuming complete 

ruptures; epistemic 
alternative 

Empirical MD, 
incomplete 
only (n=18) 

MD -2.71 0.354 0.305 0.42 0.35 

Recommend for estimating 
MD assuming incomplete 

ruptures; epistemic 
alternative 

Empirical MD, 
all data 
(n=60) 

MD -2.73 0.422 0.354 0.50 n/a 
Provided for completeness; 
do not recommend use for 

hazard. 
 
 

4.2.6 DISCUSSION 

The updated database of reverse and reverse-oblique surface-fault ruptures represents a 
significant improvement in data quality and completeness over previous compilations largely 
thanks to the SURE 1.0 and FDHI database efforts. The methodology used here to filter the data 
and classify events as “complete” or “incomplete” is one of many potential approaches to apply 
for developing useful models for displacement hazard. Other potential methodological choices, 
such as employing alternative methods for estimating AD from the rupture dataset, using 
orthogonal regression, or regressing displacements against surface rupture length, may be 
applied as well to yield epistemic alternative equations useful for hazard assessment. The choices 
we have made largely reflect our preference for simple models that build directly on previous 
efforts. In this regard, Figure 4.15 shows plots comparing median models of AD vs MW (panel a) 
and MD vs MW (panel b) developed from this study to other models compiled from the literature. 
All can be expressed in the form provided in equation (4.2), and the a, b, and s regression 
parameters are listed in Table 4.5. Interestingly, the result of this analysis for vertical AD 
(median model) is very similar to the empirical log10AD – MW regression parameters determined 
by Hecker et al. (2013) based on data from all rupture types compiled by Wesnousky (2008). 
Also of note are the steep slopes of the Wells and Coppersmith (1994) empirical displacement 
relations (based on all slip types; 0.69 for AD and 0.82 for MD) compared to the other empirical 
relations (0.32 to 0.51).  
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Figure 4.15. Comparison of empirical log-linear relations between AD (panel a) or MD (panel b) and 
moment magnitude applicable to reverse or reverse-oblique faulting. 
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Table 4.5. AD and MD Regression Parameters for the form Log10D = a + bM + 𝑠𝑠𝑠𝑠 

Model, R and RO data 
unless specified 

AD 
or 

MD 
a b s N R2 

Theoretical (this study) AD -3.43 0.5 n/a n/a n/a 
Complete ruptures (this 
study) AD -2.87 0.416 0.133 29 0.89 

All ruptures (this study) AD -2.98 0.427 0.181 32 0.83 

MR11 AD -
2.2192 0.3244 0.17  0.62 

WC94, R data only AD -0.74 0.08 0.38 15 0.01 
WC94, All slip types  AD -4.80 0.69 0.36 56 0.56 
HEA13, All slip types AD -2.79 0.41 0.33 W08 n/a 
Complete ruptures (this 
study) MD -2.50 0.415 0.148 42 0.87 

Incomplete ruptures (this 
study) MD -2.71 0.354 0.305 18 0.42 

All ruptures (this study) MD -2.73 0.422 0.354 60 0.50 

MR11  MD -
3.1971 0.5102 0.31 55 0.53 

WC94, R data only MD -1.84 0.29 0.42 21 0.13 
WC94, All slip types MD -5.46 0.82 0.42 56 0.61 

Note: MR11 = Moss and Ross (2011); WC94 = Wells and Coppersmith (1994); HEA13 = Hecker et al. 
(2013); W08 = Wesnousky (2008). The WC94 Reverse (R) data only regression parameters were 
interpreted to be not significant and are shown in italics. 
 
The implementation of alternative AD or MD models in hazard should be guided by project 
objectives, design criteria, available information about the fault posing the hazard, and the 
approach to risk and engineering decision making adopted by the project owner and/or other 
stakeholders. The filtered models we developed for complete ruptures are intended to better 
represent cases for surface-fault rupture from faults with a clear, repeated history of surface 
faulting. Although the median displacement for the “complete” rupture case is higher than for the 
“all” data regression (Figure 4.10), the lower standard error of the complete rupture regression 
results in lower displacement estimates at the 84th and higher percentiles compared to the “all” 
data regression. Because a lot of the higher standard error in the “all” data regression is due to 
lower displacement events (those we interpret as incomplete), the consequence to hazard is 
unrealistically high displacement values at higher statistical percentiles that are often considered 
in hazard studies.  
 
With regards to incorporating the possibility for an incomplete rupture in a hazard analysis, this 
decision should be based on an assessment of the fault in question and the project parameters. If 
additional conservatism is desired and/or a geologic assessment of the subject fault suggests it is 
likely to generate complete ruptures, then the complete rupture regression may be given full 
weight in a hazard analysis. If, on the other hand, a mean-centered hazard is desired, and/or there 
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is no compelling case for asserting a fault will not produce an “incomplete” rupture, then 
capturing epistemic uncertainty by weighting complete and incomplete rupture regression 
parameters is warranted. As a starting point for assigning weights, we suggest utilizing the ratio 
of complete to incomplete ruptures in the dataset as a proxy for the site-specific probability of a 
particular fault generating a complete vs incomplete rupture. In this case, the complete rupture 
regression would receive a weight of (42∕60 = ) 0.7 and the incomplete rupture regression would 
receive a weight of (18∕60 = ) 0.3. Separating the ruptures into epistemic alternatives for complete 
vs incomplete ruptures has the advantage over the “all” regression parameters of capturing the 
observed rupture behavior of the empirical dataset, while not penalizing the model with an 
overly high standard error that would result in unrealistically high average or maximum 
displacements at high probability levels. 
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5 Probability of Distributed Displacement 

Distributed displacements often require more effort to document in the field than primary 
displacements.  And different mechanisms other than secondary displacement can contribute to 
the observations.  In this study we look at two different databases to evaluate the probability of 
distributed displacement for reverse events: FDHI and SURE.  To provide some basis for the 
observed results, an analytical solution was developed as a function of rupture mechanism. 

5.1 ANALYTICAL ESTIMATES 

An attempt was made to provide an analytical basis for the distance of displacements that can be 
observed.  The assumptions are: 

o Particulate mechanics controls the physics of surface-fault rupture, 
o Local stress fields are the same as regional stress fields, 
o The example, which is derived for a dip of 60 degrees and a friction angle of 30 degrees, 

is reasonably representative. 
We are only focusing on the physics of particulate mechanics and ignoring tectonic or structure 
controlled surface displacements for this example.  The boundary that is often used to 
differentiate between rock and soil at the ground surface is 1500 m/s shear-wave velocity, which 
often indicates the limit of material that is “rippable” with heavy equipment.  Material with a 
velocity less than this often behaves like a particulate; material with a shear-wave velocity 
greater than 1500 m/s often behaves like a solid.  
 
The stress conditions that result in the distributed displacements propagating in a particulate 
material are different dependent upon if the stress regime is compressional or extensional.  Using 
a linear failure criteria like Mohr-Coulomb, we can map the stresses into Mohr space (normal 
stress and shear stress) and visualize the initial stress conditions and failure stress conditions that 
result in particle dislocation, rupture propagation, and displacement that occurs away from fault 
strike.  This particle dislocation produces planes of weakness that coalesce into a wedge type 
failure commonly evaluated in near surface conditions for civil works and construction purposes 
(Terzaghi, 1943) but used here to better understand propagation of distributed fault rupture 
deformations. 
 
 



43 
 

 
Figure 5.1. For dip-slip earthquakes we evaluate the stress conditions along primary fault rupture with 
respect to the hanging wall and footwall. 

5.1.1 REVERSE MECHANISM 

For reverse events the stress field is compressional.  The compression will result in horizontal 
stresses exceeding vertical stress to the point where the stress circle touches the failure envelope 
defined by the friction angle.  The failure plane is then equal to 45 minus half the friction angle 
as found by geometry. 
 
 

 
 

Figure 5.2.  Mohr-Coulomb plot of the stress conditions that results in particulate failure when subjected 
to a compressional stress field. 
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The distance from strike (r) that the failure plane propagates is then a function of depth (z) of a 
failure wedge of a particulate material undergoing compression (Figure 5.3).  Using a dip angle 
of 60 degrees we find that that distance can be defined geometrically as: 
 

𝑟𝑟 =
𝑧𝑧 𝑐𝑐𝑐𝑐𝑐𝑐(60)

𝑠𝑠𝑠𝑠𝑠𝑠 �45 − 𝜙𝜙
2�

                                                                      (5.1) 

 
For a friction angle of 30 degrees, the distance r = 2.31z or greater than two times the depth of 
the failure wedge.  Equation (5.1) indicates that as the friction angle increases that the distance 
from strike increases for distributed displacements.  As the dip angle decreases the distance 
increases.  If we assume a sediment depth of 1 km (using a threshold of 1500 m/s) then the 
distance we would expect displacements to propagate from strike would be roughly 2.3 km.  But 
on average material would get stronger with depth due to higher stress conditions and/or higher 
friction angles so we would expect displacements further than this.   
 

 

Figure 5.3. Passive wedge geometry in a compressional stress field. 

 
When solving for the force required (Fig 5.4) to mobilize the wedge of soil (typically called a 
passive wedge) we find that: 
 

𝑃𝑃𝑝𝑝 =
1
2
𝐾𝐾𝑝𝑝𝛾𝛾𝑧𝑧2 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐾𝐾𝑝𝑝 =

𝜎𝜎ℎ𝑓𝑓
𝜎𝜎𝑣𝑣

=
1 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

= 𝑡𝑡𝑡𝑡𝑡𝑡2 �45 +
𝜙𝜙
2
�                          (5.2) 
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Figure 5.4.  Solving for the force Pp required to mobilize the passive wedge to failure. 

A linear failure surface from the Mohr-Coulomb assumption as we have used here, or a more 
realistic log-spiral failure surface (Carquot and Kerisel, 1948) can be used to model the 
propagation of distributed displacement.  The log-spiral failure surface would result in slightly 
less distance from strike (r) than the linear failure assumption. 
 

5.1.2 NORMAL MECHANISM 

In normal earthquakes, where the stress field is extensional in nature, we see a different 
progression towards distributed displacements.   Here the horizontal stress will decrease to the 
point where the stress circle touches the failure envelope resulting in a failure plane of 45 plus 
half the friction angle. The change from compressional to extensional in this problem only 
changes the sign in the denominator of Equation 5.1 from minus to plus: 
 

𝑟𝑟 =
𝑧𝑧 𝑐𝑐𝑐𝑐𝑐𝑐(60)

𝑠𝑠𝑠𝑠𝑠𝑠 �45 + 𝜙𝜙
2�

                                                                      (5.3) 

 
Given a 30 degree friction angle and 60 degree dip, the distance r = 1.33z.  For normal events, an 
increase in friction angle results in a decrease in the distance from strike we would expect to see 
distributed displacements.  As in the reverse faulting mechanism case, a decrease in the dip angle 
results in an increase in distance.  And with material strengthening with depth we would expect 
to see smaller distances from strike. 
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Figure 5.5. Mohr-Coulomb plot of the stress conditions that results in particulate failure when subjected 
to an extensional stress field. 

 
Figure 5.6.  Active wedge geometry in an extensional stress field. 
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The wedge failure is now what is typically called and active wedge.  The force required to 
mobilize the active wedge is: 
 

𝑃𝑃𝑎𝑎 =
1
2
𝐾𝐾𝑎𝑎𝛾𝛾𝑧𝑧2 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐾𝐾𝑎𝑎 =

𝜎𝜎ℎ𝑓𝑓
𝜎𝜎𝑣𝑣

=
1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
1 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

= 𝑡𝑡𝑡𝑡𝑡𝑡2 �45 −
𝜙𝜙
2
�                    (5.4) 

 
 
If we plug in some reasonable numbers and leave z as unknown, we find that there is roughly an 
order of magnitude more force required to mobilize the compressional (passive) failure versus 
the extensional (active) failure.  If we relate proportionally the seismic moment (Mo) to the force 
required (P) then if a normal (extensional) event displays distributed displacements for a Mw 6 
(Mo~1012 MN*m), a reverse (compressional) event would take just under a Mw 7 (Mo~ 1013 

MN*m) to display the same distributed displacements.   
 

5.1.3 STRIKE SLIP MECHANISM 

Finally with strike slip events we tend to have near vertical fault planes.  The stress conditions 
are quite different for strike-slip earthquakes in that only shear is being added and particulate 
will fail in a simple shear manner.   The stress conditions are such that the horizontal and vertical 
stresses remain unchanged but shear stress is added until the failure envelope is reached.   
 

 
 

Figure 5.7. Mohr-Coulomb plot of the stress conditions that results in particulate failure when subjected 
to a pure shear stress field. 



48 
 

 
This type of failure mechanisms does not inherently result in distributed displacements, and it is 
thought that off-strike displacements are due to oblique stresses, asperities and bends in the fault, 
strain hardening behavior of the particulate forcing strains to migrate off the plane, or other 
mechanisms. 

5.1.4 ANALYTICAL SUMMARY 

In summary, a simple analytical approach considering particulate physics was used to compare 
how the distance of distributed displacement from strike can be considered a function of the fault 
rupture stress conditions and the fault rupture mechanism.   
 

• The particulate mechanics indicate that reverse events will tend to propagate 
displacements 1.7 times greater than normal events for a friction angle of 30 degrees; 
friction angles of 20 and 40 degrees would suggest reverse:normal ratios of secondary 
displacement widths of about 1.4 to 2.1, with all else being equal.   
 

• A decreasing dip angle will tend to propagate displacements further from strike for both 
normal and reverse.   
 

• Changing material properties, i.e., friction angle, has the opposing effects depending on if 
the mechanism was reverse or normal.   
 

• The force required to mobilize reverse failure wedges is an order of magnitude greater 
than the force required for normal failure wedges, which is roughly equal to 1 unit of 
moment magnitude.   This translates to a significantly higher likelihood of observing 
normal fault distributed displacements than reverse all things being equal, which will be 
shown to be verified in the data. 
 

• Strike-slip events are simple shear in nature and distributed displacements are likely a 
function of conditions that cause a deviation from that such as fault bends, fault steps, 
fault asperities, strain hardening material behavior, or other. 

 
Some additional thoughts on the analytical exploration of distributed displacements:  
 

o The dip angle of primary displacement in a particulate material will be controlled by the 
same physics which would lead to normal faults being steeper (45 plus half the friction 
angle) than reverse faults (45 minus half the friction angle) if all else is held equal.   
 

o Some dip-slip fault planes have started out in a compressional stress field and evolved or 
transitioned to an extensional stress field.  An example of this would be overthrust faults 
in the Montana Rockies that were once compressional and have transitioned in the 
current geologic era to extensional.  Transitioning from compressional to extensional 
would result in a shallower predefined dip angle than would likely happen otherwise.  
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This would result in distributed displacements further away from strike than if it were not 
the case. 
 

o Geologic structure in solid material will follow different physics such as a non-linear 
failure envelope like Hooke-Brown.  This will result in steeper dip angles when rupturing 
through intact rock and steeper distributed displacement angles as well.  However 
existing structure and existing fault planes will provide weaknesses and conduits for 
displacement that control the location and angle for primary and distributed 
displacements.  The strain will find the easiest path to work its way to the ground surface. 

5.2 STATISTICAL RESULTS  

In prior studies of normal (Youngs et al., 2003) and strike slip (Petersen et al., 2011) earthquake 
displacement datasets, the approach to modeling the probability of distributed displacements was 
two-fold.  The first step was to grid the fault region (e.g., 500 m grid squares), class the gridded 
data into yes or no observations, and then fit a logistic regression to this class data.   The second 
step was to then to evaluate the amplitude of distributed displacements with distance from strike. 
 
Here we are taking a slightly different approach.  We evaluate distributed displacements in three 
steps; 

1) The probability of nonzero displacement, P(d>0) using a 500m grid squares to observe 
the occurrence of distributed traces. 

2) The frequency of displacements as a function of distance from primary fault strike, 
P(d>0). 

3) The amplitude of distributed displacements with respect to maximum and average 
displacement, d/MD and d/AD. 

 
Where applicable we have compared the FDHI data with the SURE 2.0 to provide confidence in 
the results.  We evaluated the distributed data from several perspectives to determine if there was 
any dependence on magnitude, surface rupture length, or location along fault.  Below in figure 
5.8 is a plot of displacement as a function of x/L, and no relationship can be observed. 
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Figure 5.8.  Plot of r versus x/L for all R/RO events in the FDHI database.  The obvious string of data from 
x/L of 0.37 to 0.40 is from the Kaikoura event. 

5.2.1 PROBABILTY OF NONZERO DISTRIBUTED DISPLACEMENT 

To determine the probability of nonzero distributed displacement, P(d>0), all the reverse (RV) 
and reverse-oblique (RV-OBL) events from the FDHI database were used.  A list of the 25 
events found in the FDHI database is provided below.  For validation this data was compared at 
times to the SURE 2.0 database. 

 
Table 5.1.  List of FDHI events used in this analysis. 
 

Event Name   Event Date Mechanism Mw SRL (km) 
1. Wenchuan China   5/12/2008  RV-OBL  7.9 240 
2. ChiChi Taiwan   9/20/1999  RV-OBL  7.62  72 
3. Nagano Japan   11/22/2014  RV   6.2 8.5 
4. Kashmir Pakistan  10/8/2005  RV   7.6 70 
5. Kaikoura New Zealand  11/13/2016  RV-OBL  7.8 200 
6. San Fernando California  2/9/1971  RV   6.61 19 
7. Bohol Philippines   10/15/2013  RV   7.1 50 
8. Kern California   7/21/1952  RV   7.36 32 
9. Petermann Australia   5/20/2016  RV   6.0 16 
10. El Asnam Algeria   10/10/1980  RV   7.3  36 
11. Cadoux Australia   6/2/1979  RV   6.1 14 
12. Calingiri Australia   3/10/1970  RV   5.03 3.25 
13. Marryat Creek Australia  3/30/1986  RV   5.7 13 
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14. Meckering Australia   10/14/1968  RV   6.59 37 
15. Pukatja Australia   3/23/2012  RV   5.18 1.25 
16. TennantCreek1 Australia  1/22/1988  RV   6.27 15 
17. TennantCreek2 Australia  1/22/1988  RV   6.44 8 
18. TennantCreek3 Australia  1/22/1988  RV   6.58 8.25 
19. Rikuu Japan    8/31/1896  RV   6.7 40 
20. Mikawa Japan   1/12/1945  RV   6.6 7 
21. IwateInland Japan   9/3/1998  RV   5.8 1.2 
22. ChonKemin Kyrgyzstan  1/3/1911  RV   8.02 177 
23. LeTeil France    11/11/2019  RV   4.9 5 
24. Spitak Armenia   12/7/1988  RV-OBL  6.77 7.5 
25. Killari India    9/29/1993  RV   6.2 0.25 

 
A gridding approach was taken to evaluate the frequency of distributed displacements (d) in the 
hanging wall (HW) and footwall (FW).  Each event was plotted using the coordinate system 
provided with the data and then a 500m by 500m cell grid was overlayed.  The occurrence of 
distributed displacement traces were then marked if they fell within a 500m cell and the sum of 
these were then divided by the total number of cells at that grid spacing or distance (r) from the 
principle fault.  Figure 5.9 shows and example of this approach for the San Fernando event.  The 
red lines show principal traces, blue lines distributed traces, green circles the cell where HW 
traces were observed, and red x’s where FW traces were observed.  Appendix B shows each 
FDHI event with the grid and observed traces.  This gridding approach was found to be more 
defensible compared to the 500m slice approach that was used in the first round of this research.   

 
Figure 5.9. Gridded fault rupture (500m x 500m) showing principal and distributed surface fault rupture 
traces.  The red lines show principal, blue lines distributed on the hanging wall, and green lines 
distributed on the footwall.  Marked grid blocks were those counted toward occurrence.  
 
The plotted data and the upper range as defined by the 95th percentile shown in figures 5.10 and 
5.12.   For the hanging wall (HW) side the following plots show for the entire data range, the 3 
km range, and for additional percentiles of 85th and 50th percentile.  Some observations; the 
FDHI and SURE2.0 databases are in good agreement providing confidence in the probability 
values, the 50th percentile drops off to zero around 1km distance, and that distributed 
displacements have been observed out to 22.5 km in some situations.  
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Figure 5.10.  Distance versus probability of distributed surface fault rupture for hanging wall. 
 

 
Figure 5.11. Distance versus probability of distributed surface fault rupture for hanging wall. 
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Figure 5.12. Distance versus probability of distributed surface fault rupture for hanging wall. 
 
Examining further the data has been parsed by specific events to see if any one event or region is 
dominating the percentiles.  Figure 5.13 shows event by event how the HW side is influenced by 
specific events compared to the 95th percentile.  As can be seen the San Fernando event drives 
the upper bound across most of the range, with the small Killary and Pukatja events controlling 
the upper bound at 0.5 km distance.   The latter two events are small magnitude small surface 
rupture events where the interpretation of primary versus secondary can be subjective and most 
of the displacements fall within one or two 500 m cells (see gridded events in the Appendix B). 
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Figure 3.13.  Examining occurrence of distributed surface fault rupture by event for hanging wall. 

 
On the footwall (FW) side the same plots are shown (Figures 5.14 through 5.16).  Some 
observations of the FW data; the FDHI and SURE2.0 data differ some in the 95th percentiles, the 
50 percentile goes to zero at 1 km similar to HW, and distributed displacements have been 
observed out to 11km.  The two small events of Killary and Pukatja again strongly influence the 
frequency at 0.5km, and Cadoux and TennentCreek2 events influence the upper bound across the 
0.5 to 1.5km range.  The difference between SURE2.0 and FDHI data has to do with how each 
database assigns hanging and foot wall designation with respect to principal fault designation. 
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Figure 5.14. Distance versus probability of distributed surface fault rupture for footwall. 

 

 
Figure 5.15. Distance versus probability of distributed surface fault rupture for footwall. 
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Figure 5.16. Distance versus probability of distributed surface fault rupture for footwall. 

 

 
Figure 5.17. Examining occurrence of distributed surface fault rupture by event for footwall. 
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Tabular values of the percentiles are provided to allow users to define the threshold they are 
comfortable using in forward analysis.  Although the 95th percentile goes to zero at specific 
distances, some projects may warrant using a nonzero value to account for complex faulting 
situations that can produce distributed displacements at long distance from principal faulting. 
 
Table 5.2: Percentiles for Hanging Wall (HW) left, and Footwall (FW) right. 
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Exponential curves were fit the 85th percentiles for ease of coding.  The curves follow the 
function form below where r is the distance in km from the principal fault, a and b are 
coefficients as a function of hanging wall or footwall, and the probability value is capped at 1.0.  
 

𝑃𝑃(𝑑𝑑 > 0) = 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑎𝑎 ∗ 𝑟𝑟 + 𝑏𝑏) ≤ 1.0                                           (5.5) 
 
Table 5.3. Coefficients for 85th percentile function for P(d>0). 
coefficients Hanging Wall Footwall 
a 2.2 2.4 
b 0.5 0.4 

 
If we examine this data for magnitude or surface rupture length dependence, we first look at the 
relationship between magnitude and surface rupture length for these 25 R/RO events.  The best 
fit to the data in semi-log space compares to prior relationships such as Wells and Coppersmith 
(1994). 
 

 
Figure 5.18.  Magnitude versus Surface Rupture Length (SRL) in km for the data used in this analysis. 

The following plots show the data binnned by magnitude ranges of; 8.0 to 7.5, 7.5 to 7.0, 7.0 to 
6.5, 6.5 to 6.0, and 6.0 to 4.9.  This binning provided a relatively even distribution of the number 
of events for each bin and coincides with magnitude ranges that are commonly used in 
engineering practice.   Figure 5.19 shows the data out to the distance extents represented in the 
FDHI data.  No clear trends are observed other than San Fernando dominating the M 6.5 to 6.0 
range.  Figure 5.20 focuses on the 0 to 3km range and shows the data as well as median trends 
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for each magnitude bin.  Here the median trends show that for this R/RO data that magnitude less 
than 6.5 tend to dominate the 0.5 km range, which are also on the higher end for the 1.0 km 
range.  This would suggest that the smaller magnitude reverse events have a higher likelihood of 
producing distributed displacements at these distances than the larger magnitude events.   

 
Figure 5.19.  Distance versus distributed surface fault rupture binned by magnitude, hanging wall. 

 
Figure 5.20. Distance versus distributed surface fault rupture binned by magnitude, hanging wall. 
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The same process was performed for the footwall data.  Figures 5.21 shows to the data extent 
and Figure 5.22 shows out to 3 km with median values.  The trend is not as strong as with the 
hanging wall data. 

 
Figure 5.21. Distance versus distributed surface fault rupture binned by magnitude, footwall. 

 
Figure 5.22. Distance versus distributed surface fault rupture binned by magnitude, footwall. 
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If we inspect the data from a surface rupture length (SRL) perspective, we would expect similar 
trends because of the correlation between magnitude and SRL.  The bins did not necessarily 
align with the magnitude bins as there is not a 1:1 correlation.  Here the bins of > 100 km, 100 to 
50, 50 to 25, 25 to 10, 10 to 5, and < 5 km were used as that gave an even distribution of events 
per bin.  We see on the hanging wall side (Figure 5.23) that the bin of 25 to 10 km tends to 
dominate, however that is due to the San Fernando and Cadoux events falling into this bin.   The 
same is true for the footwall side (Figure 5.24). 

 
Figure 5.23.  Distance versus distributed surface fault rupture binned by surface rupture length, 
hanging wall. 

 
Figure 5.24. Distance versus distributed surface fault rupture binned by surface rupture length, 
footwall. 
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Summary of P(d>0) Assessment 
 
The probability of distributed rupture has been examined here for R/RO events.  A gridded 
approach was used (e.g., Petersen et al, 2011).  The occurrences of distributed rupture traces 
were counted within each 500 x 500 m grid cell, and divided by the total number of cells at that 
specific grid distance from the principal fault trace.  Both the FDHI and SURE 2.0 databases 
were evaluated in this way and reasonable agreement between the two databases was observed in 
the percentile curves.  In general, there is an exponential decay of the probability of distributed 
deformations away from principal fault trace.  Percentiles were calculated and tabulated, and 
curves were fit to the 85th percentiles for PFDHA coding purposes.  
 
The dependence of this decay was examined per each event, as well as a function of magnitude 
and surface rupture length.  It was found that some events have produced widespread distributed 
deformations whereas others very limited distributed deformations.  For example, the San 
Fernando event produced many distributed deformation traces out to distances greater than 3 km 
which was atypical of other events in the database.  
 
There was some magnitude dependence observed in the hanging wall data, where smaller event 
less than M 6.5 tended to produce a higher likelihood of distributed rupture out to 1 km when 
compared to larger magnitude events.  The dependence on surface rupture length was not as 
prominent and tended to be controlled by atypical events such as San Fernando. 
 
Distributed deformations were documented out to 22.5 km on the hanging wall and 11 km in the 
footwall, but these are associated with complex faulting conditions (e.g., conjugate or 
sympathetic faults) and should be considered when evaluating similar tectonic setting.  The 95th 
percentiles tended towards zero at these large distances because the occurrences were an 
exception.  When working in complex faulting settings it is advised to set the probability to some 
non-zero value to account for the potential of these rare but not unobserved distributed 
deformations.  
 
As in most statistical analysis in the geohazard realm, more data is always warranted.  We have 
only 25 events to inform our inferences which is not enough.  The median trends are expected to 
hold true as more data is collected whereas the standard deviation may diminish with more 
observations. 
 
  



63 
 

5.2.2 FREQUENCY OF DISTRIBUTED DEFORMATIONS 

The frequency distribution of the data was plotted both in aggregate form and as a function of 
magnitude bins. Fitting a function to the cumulative frequency data will produce a cumulative 
distribution function (CDF) that can enable the forecasting of the probability of exceedance. 
 
A key observation of the frequency distribution of the data (e.g., Figure 5.25) is that there is an 
exponentially decreasing portion that is within the initial few kilometers, followed by a random 
portion that can reach tens of kilometers from strike.  The exponential portion agrees with the 
analytical solution, whereas the random portion can be seen in other prior studies such as Youngs 
et al. (2003).  After examining the events that contribute to the random portion of the distributed 
displacements (Wenchuan, Kaikoura, and Rikuu) it was found that these far displacements can 
be attributed sympathetic and/or conjugate faults and therefore are controlled by a different 
process than displacement on a single “simple” fault.   
 
To aid in forward modeling of this we have separated the data and provided distributions that fit 
both; 

a) A single fault trace where the mechanics of distributed displacements can be 
conceptualized similar to the analytical solution presented above, or 

b) A complex fault system where distributed displacements may occur at distance due to 
sympathetic release on adjacent or nearby faults. 

 
The hanging and foot wall plots below show all the data with the exponential and random 
displacements as well as the exponential displacements only. 
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Figure 5.25.  FDHI Reverse HW All Data Frequency Plot. 

 

Figure 5.26. FDHI Reverse HW Exponential Data Frequency Plot. 
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Figure 5.27.  FDHI Reverse FW All Data Frequency Plot. 

 
Figure 5.28. FDHI Reverse FW Exponential Data Frequency Plot. 
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To account for magnitude dependence, the data is binned by magnitude and the frequency 
distributions are plotted.  We have fit curves to the cumulative distributions to provide CDF’s for 
evaluating the probability of exceedance.  Here we are accounting for magnitude dependence as 
well as tectonic dependence by separating out the exponential versus the random portions of 
displacements.   Curve fitting was accomplished using the cftool in Matlab.  A 2nd order 
exponential provided efficient fitting to the cumulative distributions and provide CDF’s for 
forecasting the probability of exceedance.  Below are the equations, table, and frequency plots of 
the hanging wall reverse FDHI data. 
 
 

𝑃𝑃(𝑑𝑑 > 𝑑𝑑𝑜𝑜) = 1 − 𝐹𝐹(𝑥𝑥) < 1.0                                                     (5.6) 
 

𝐹𝐹(𝑥𝑥) = 𝑎𝑎 exp(𝑏𝑏 𝑥𝑥) + 𝑐𝑐 exp(𝑑𝑑 𝑥𝑥)                                              (5.7) 
 

Table 5.4.  Coefficients for Equation 5.6 for Reverse Mechanism Hanging Wall Distributed 
Deformations from FDHI data. 

 a b c d R2 : RMSE 
HW (7 to 7.9)+ 0.6998 2.75*10-5 -0.6931 -0.001219 0.9882 : 0.02474 
HW (7 to 7.9) 0.8289 5.682*10-5 -0.8346 -0.001735 0.9924 : 0.02972 
HW (6 to 6.9)+ 0.8858 6.203*10-6 -0.8957 -0.001959 0.9904 : 0.01929 
HW (6 to 6.9) 1.166 -4.699*10-5 -1.1730 -0.001539 0.9957 : 0.03113 
HW (5 to 5.9) 98.45 0.0023 -98.53 -0.0142 0.8363 : 23.83 
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Figure 5.29.  Frequency distribution (top) and CDF fitting (bottom) of Mw 7.0-7.9 FDHI hanging wall data, 
exponential and random. 
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Figure 5.30. Frequency distribution (top) and CDF fitting (bottom) of Mw 7.0-7.9 FDHI  hanging wall data, 
exponential only. 
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Figure 5.31. Frequency distribution (top) and CDF fitting (bottom) of Mw 6.0-6.9 FDHI  hanging wall data, 
exponential and random.  
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Figure 5.32. Frequency distribution (top) and CDF fitting (bottom) of Mw 6.0-6.9 FDHI  hanging wall data, 
exponential only. 
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Note that there was no random portion of displacement for the Mw 5.0-5.9 bin.  In addition, this 
bin showed displacements less than 100 m so the bin widths were reduced to 20 m to better 
quantify the data in this range. 
 

 
 

 
Figure 5.33. Frequency distribution (top) and CDF fitting (bottom) of Mw 5.0-5.9 FDHI  hanging wall data. 
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Below are the frequency plots and the table of footwall data evaluated for magnitude and 
tectonic dependence.   
 

 

 

Figure 5.34. Frequency distribution (top) and CDF fitting (bottom) of Mw 7.0-7.9 FDHI  footwall data, 
exponential and random. 
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Figure 5.35. Frequency distribution (top) and CDF fitting (bottom) of Mw 7.0-7.9 FDHI footwall data, 
exponential only. 
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Figure 5.36. Frequency distribution (top) and CDF fitting (bottom) of Mw 6.0-6.9 FDHI foot wall data. 

  



75 
 

Note the FDHI database of reverse events contained no random portion of displacements for the 
Mw 6.0-6.9 bin for foot wall.  In addition, there were no foot wall distributed displacements 
measured for Mw less than 6.0.   
 

Table 5.5. Coefficients for Equation 26 for Reverse Mechanism Footwall Distributed Deformations 
from FDHI data. 

 a b c d R2 : RMSE 
FW (7 to 7.9)+ 0.1959 0.0001 -0.2020 -0.0026 0.8547 : 0.08085 
FW (7 to 7.9) 1.445 -7.08*10-5 -1.4540 -0.0007 0.9959 : 0.03045 
FW (6 to 6.9) 0.9297 2.51*10-5 -0.9233 -0.002 0.9930 : 0.03816 
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5.2.3 NORMALIZED SCALING OF DISTRIBUTED DEFORMATIONS 

To provide scaling of the distributed displacements (d) we have normalized it by the maximum 
(MD) and average (AD) principal displacement for each event.  Figure 1 shows all events color 
coded to observe the contribution each has to the footwall (negative r values) and the hanging 
wall (positive r values).   Here r is the distance from principal fault strike.  Both d/MD and d/AD 
relationships are shown.   
 
Figure 2 provides box plots of the data to observe the central tendency and dispersion.  The 
lower plot shows the specific values that are used to calculate the statistics.  Figure 3 shows the 
50th percentile values from the binned data.  Various bin sizes were evaluated and it was found 
that the following bins, ±0.1km centered on zero, 0.1 to 1km,  1km to 3km, and greater than 
 3km, provided the clearest explanation of changes with distance given the current data density. 
 
Subsequent plots (Figure 4) show the exploration of how the 50th percentiles are affected by 
dropping individual events out.  Here we can see that Kaikoura has a large impact on the 
distances far from principal strike.  Meckering has an impAact in the 1 to 3 km range.  Other 
events that have a lesser impact on the percentiles at less than 3 km are Chi Chi and Tennant 
Creek2.   
 
Figure 5 shows the d/MD data using the 95th percentiles compared to other studies. Figure 6 
shows the d/MD data using the 50th percentile and fitting an envelope compared to other studies.  
The envelope uses the following exponential form: 
 

𝑑𝑑 𝑀𝑀𝑀𝑀⁄ = 𝑐𝑐 ∗ exp(𝑑𝑑 ∗ 𝑟𝑟)                                                    (5.8) 
 
Coefficients are shown in Tables 2 and 3.  Figure 7 shows the d/AD data using the 95th 
percentiles compared to other studies, and Figure 8 shows the d/AD using 50th percentile and 
fitting an envelope compared to other studies. 
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Figure 5.37.  Upper figure shows d/MD, lower figure shows d/AD.  Color coded by event to show the 
relative contribution to different regions of the footwall (negative r) and hanging wall (positive r) 
space. 
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Figure 5.38. Both figures showing box plots of the normalized distributed displacements (d).  Lower 
figure shows the individual data points for perspective. 
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Figure 5.39.  These plots show the 50th percentiles for binned data (gray diamonds).  The upper 
plot shows for the whole range of the data and the lower plot for the plus and minus three 
kilometers range.  Vertical dark lines show the extents of the bins used. 
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Figure 5.40.  Percent change in 50th percentiles when events are dropped out individually.   
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Table 5.6. Showing percentiles for d/MD and d/AD over the r (m) range. 
 

 
 
From this analysis the median ratio of MD/AD for distributed displacements within plus/minus 3 
km of principal faulting is 3.5. 
  



82 
 

 
Figure 5.41.  The d/MD is shown with 95th percentile values as  compared to curves from other 
studies.  Takao et al (2013) curves are for the 90th percentile for reverse and strike slip events.  
Youngs et al (2003) curves are for 85th to 95th percentile for normal events.

 

Figure 5.42. The d/MD is shown here with a 50th percentile envelope for simple faulting compared 
to curves from other studies. 
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Figure 5.43. The d/MD is shown here with a 50th percentile envelope for complex faulting compared 
to curves from other studies. 

 
Figure 5.44. The d/AD with 95th percentile values as shown compared to another study.  Takao et al 
(2013) curves are for the 90th percentile for reverse and strike slip events.   
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Figure 5.45. The d/AD with 50th percentile values and median envelope compared to other studies.  
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Table 5.7. d/MD coefficients for median envelope for simple and complex faulting. 

d/MD simple  
coeff c coeff d   
0.245 -0.18 FW 
0.245 -0.34 HW 

 

d/MD complex  
coeff c coeff d   
0.245 -0.09 FW 
0.245 -0.015 HW 

 
 
Table 5.8. d/MD coefficients for 85th percentile envelope for simple and complex faulting. 

d/MD simple  
coeff c coeff d   

0.68 -0.13 FW 
0.43 -0.4 HW 

 

d/MD complex  
coeff c coeff d   

0.68 -0.13 FW 
0.43 -0.012 HW 
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6 Hazard Curves 

Combining the spatial variability of displacement and the dependence of surface rupture on 
magnitude we arrive at Equation 2 from before: 
 

𝑃𝑃∗(𝐷𝐷 > 𝐷𝐷0|𝑚𝑚, 𝑥𝑥/𝐿𝐿) = 𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆|𝑚𝑚, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 𝑃𝑃 �𝐷𝐷 > 𝐷𝐷0�𝑚𝑚, 𝑥𝑥𝐿𝐿 , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�        (6.1) 
 
 
The final complementary cumulative distribution is found by combining the distributions, based 
on one or more 𝑀𝑀𝑀𝑀- or 𝐴𝐴𝐴𝐴-based models. [As each of these probability distributions represents a 
random variable and the product of these yields a probability distribution of displacement given 
the occurrence of a magnitude 𝑚𝑚 earthquake that ruptures past a site.]   
 
A product of random variables can be shown to be equivalent to a logarithmic convolution (Glen 
et al., 2004).  By combining like distribution to like distribution [i.e., 𝑃𝑃(𝑀𝑀𝑀𝑀) ∗ 𝑃𝑃(𝐷𝐷/𝑀𝑀𝑀𝑀) or 
𝑃𝑃(𝐴𝐴𝐴𝐴) ∗ 𝑃𝑃(𝐷𝐷/𝐴𝐴𝐴𝐴)] we can arrive at the probability of exceedance and combining that with the 
distribution of magnitude, typically a truncated exponential, and a fault rate, we can estimate the 
displacement for an annualized return. 
 

𝜐𝜐(𝐷𝐷𝑜𝑜) = 𝛼𝛼� 𝑓𝑓(𝑚𝑚) 𝑃𝑃(𝐷𝐷 > 𝐷𝐷𝑜𝑜|𝑚𝑚, 𝑥𝑥/𝐿𝐿) 𝑑𝑑𝑑𝑑                                  (6.2)
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

 

 
Numerically integrating the above equations was accomplished using Monte Carlo simulations.  
We generate a realization of the spatial slip distribution and multiply it by a realization of the 
displacement distribution and then repeat the process thousands of times to achieve a stable 
resultant distribution.  The same calculations are performed for distributed displacement as well, 
which is based on normalized maximum principal displacement (d/MD) relationships.   
 
An example hazard curve is shown below for a Mw7.5 reverse fault with a 5mm/yr slip rate, 
fault dimensions of 100km by 15km, stiff soil conditions (VS30>600m/s), middle of the fault 
where x/L is 0.5, hanging wall conditions, and simple fault geometry. This figure shows how 
principal and distributed displacements vary with distance from the fault.   
 
Using a 975 year return period, which is typical of highway bridges, we can see that an 85th 
percentile estimate of displacement on the fault is 0.7m, at 100m from the fault it is 0.25m, and 
at 500m from the fault it is 0.03m.  Displacements beyond 500m are possible but for this hazard 
level are not forecast. 
 
The Matlab code for calculating hazard curves based on AD, MD, and d are provided in 
Appendix C.  The code requires the Statistics and Machine Learning Toolbox to run. 
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Figure 6.1.  Example hazard curve showing principal and distributed displacements for different 
distances.  These curves are showing results based on the 85th percentile of maximum displacement 
(MD).  The 975 year return period is shown, a typical hazard level for lifeline infrastructure. 
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7 Summary 

This report contains the current methodology developed by this research team for forecasting the 
probability of surface fault rupture for Reverse events.  The methodology presents models for 
average (AD) and maximum (MD) principal displacement, as well as for distributed 
displacement (d).  The data that was used to develop these models was primarily based on the 
FDHI database but was also informed by the SURE 2.0 database.  The models are valid within 
the data ranges of the databases and extrapolating beyond those data ranges is not statistically 
supported.   
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Appendix A 

The following Appendix contains example Matlab code for fitting distributions to the D/MD 
data.  A similar process was used for fitting distributions to the D/AD data.  This requires the 
Statistics and Machine Learning Toolbox. 

%Performing stats on D/MD data        3/17/21 
  
%load DMD-XL_VS_P.mat  this is the D/MD values for principal vertical slip  
  
clf; 
  
%Concatenating arrays vertically using [A;B] 
  
x_L=all(:,2); 
D_MD=all(:,1); 
  
%x_L=[Bohol91(:,2);ChiChi20(:,2);ChiChi65(:,2);ChiChi66(:,2);Kashmir71(:,2);N
agano68(:,2);Nagano69(:,2);Nagano70(:,2);Wenchuan44(:,2);Wenchuan45(:,2);Wenc
huan46(:,2);Wenchuan50(:,2);Wenchuan51(:,2)];  
%D_MD=[Bohol91(:,1);ChiChi20(:,1);ChiChi65(:,1);ChiChi66(:,1);Kashmir71(:,1);
Nagano68(:,1);Nagano69(:,1);Nagano70(:,1);Wenchuan44(:,1);Wenchuan45(:,1);Wen
chuan46(:,1);Wenchuan50(:,1);Wenchuan51(:,1)]; 
%x_L_new=[Kaikora32(:,2);Kaikora33(:,2);Kaikora34(:,2);Kaikora73(:,2);SanFern
ando2(:,2);SanFernando86(:,2);Kern122(:,2);Petermann120(:,2);ElAsnam134(:,2);
ElAsnam135(:,2);Cadoux136(:,2);Calingiri136(:,2);MarryatCreek136(:,2);Meckeri
ng136(:,2);Pukatja136(:,2);TennantCreek1136(:,2);Rikuu86(:,2);Mikawa86(:,2);I
wateinland86(:,2);ChonKemin152(:,2)] 
  
figure(1) 
semilogy(x_L,D_MD,'o') 
grid 
xlabel('x/L','Fontsize',14) 
ylabel('D/MD','Fontsize',14) 
  
%figure(2) 
%histogram(x_L) 
%xlabel('x/L','Fontsize',14) 
%ylabel('Frequency','Fontsize',14) 
  
figure(2) 
histogram(D_MD) 
xlabel('D/MD','Fontsize',14) 
ylabel('Frequency','Fontsize',14) 
  
%%%%%%%%%%%%%%%%% 
%Anderson Darling test 
% exponential (Gamma which is a subset of exponential) distribution 
% p value less than 0.05 or 5% indicates high chance the distribution fits 
  
[h,p,adstat,cv]=adtest(D_MD,'Distribution','exp'); 
  
%[h,p,adstat,cv]=adtest(x_L,'Distribution','Weibull'); 
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%[h,p,adstat,cv]=adtest(x_L,'Distribution','normal'); 
%[h,p,adstat,cv]=adtest(x_L,'Distribution','lognormal'); 
  
%%%%%%%%%%%%%%%%%%%%%%%% 
%Fitting Distributions 
  
%force all inputs to be column vectors 
D_MD = D_MD(:); 
  
%prepare figure 
figure(3) 
hold on; 
LegHandles = []; LegText = {}; 
  
  
%plot data originally in dataset "x_L data" 
[CdfF,CdfX] = ecdf(D_MD,'Function','cdf');  % compute empirical cdf 
BinInfo.rule = 1; 
[~,BinEdge] = internal.stats.histbins(D_MD,[],[],BinInfo,CdfF,CdfX); 
[BinHeight,BinCenter] = ecdfhist(CdfF,CdfX,'edges',BinEdge); 
hLine = bar(BinCenter,BinHeight,'hist'); 
set(hLine,'FaceColor','none','EdgeColor',[0.333333 0 0.666667],... 
    'LineStyle','-', 'LineWidth',1); 
xlabel('D/MD','Fontsize',14); 
ylabel('Frequency','Fontsize',14) 
LegHandles(end+1) = hLine; 
LegText{end+1} = 'D/MD data'; 
  
%create grid where function will be computed 
XLim = get(gca,'XLim'); 
XLim = XLim + [-1 1] * 0.01 * diff(XLim); 
XGrid = linspace(XLim(1),XLim(2),100); 
  
%fit this distribution to get parameter values 
pd_all = fitdist(D_MD, 'gamma'); 
YPlot = pdf(pd_all,XGrid); 
hLine = plot(XGrid,YPlot,'Color',[1 0 0],... 
    'LineStyle','-', 'LineWidth',2,... 
    'Marker','none', 'MarkerSize',6); 
LegHandles(end+1) = hLine; 
LegText{end+1} = 'gamma'; 
  
%adjust figure 
box on; 
hold off; 
  
%create legend from accumulated handles and labels 
hLegend = legend(LegHandles,LegText,'Orientation', 'vertical', 'FontSize', 
14, 'Location', 'northeast'); 
set(hLegend,'Interpreter','none'); 
  
pd_all 
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%sorting by x/L bins of 0.05 width 
  
block=[x_L,D_MD]; 
sorted=sortrows(block); 
x_L_sort=sorted(:,1); 
D_MD_sort=sorted(:,2); 
  
l1=sum(x_L_sort<=0.0499); 
bin1=D_MD_sort(1:l1); 
  
l2=sum(x_L_sort>=0.05 & x_L_sort<=0.0999); 
bin2=D_MD_sort(l1+1:l1+l2); 
  
l3=sum(x_L_sort>=0.10 & x_L_sort<=0.1499); 
bin3=D_MD_sort(l1+l2+1:l1+l2+l3); 
  
l4=sum(x_L_sort>=0.15 & x_L_sort<=0.1999); 
bin4=D_MD_sort(l1+l2+l3+1:l1+l2+l3+l4); 
  
l5=sum(x_L_sort>=0.20 & x_L_sort<=0.2499); 
bin5=D_MD_sort(l1+l2+l3+l4+1:l1+l2+l3+l4+l5); 
  
l6=sum(x_L_sort>=0.25 & x_L_sort<=0.2999); 
bin6=D_MD_sort(l1+l2+l3+l4+l5+1:l1+l2+l3+l4+l5+l6); 
  
l7=sum(x_L_sort>=0.30 & x_L_sort<=0.3499); 
bin7=D_MD_sort(l1+l2+l3+l4+l5+l6+1:l1+l2+l3+l4+l5+l6+l7); 
  
l8=sum(x_L_sort>=0.35 & x_L_sort<=0.3999); 
bin8=D_MD_sort(l1+l2+l3+l4+l5+l6+l7+1:l1+l2+l3+l4+l5+l6+l7+l8); 
  
l9=sum(x_L_sort>=0.40 & x_L_sort<=0.4499); 
bin9=D_MD_sort(l1+l2+l3+l4+l5+l6+l7+l8+1:l1+l2+l3+l4+l5+l6+l7+l8+l9); 
  
l10=sum(x_L_sort>=0.45 & x_L_sort<=0.50); 
bin10=D_MD_sort(l1+l2+l3+l4+l5+l6+l7+l8+l9+1:l1+l2+l3+l4+l5+l6+l7+l8+l9+l10); 
  
  
%gamma fit by bin 
  
pd_1 = fitdist(bin1, 'gamma') 
pd_2 = fitdist(bin2, 'gamma') 
pd_3 = fitdist(bin3, 'gamma') 
pd_4 = fitdist(bin4, 'gamma') 
pd_5 = fitdist(bin5, 'gamma') 
pd_6 = fitdist(bin6, 'gamma') 
pd_7 = fitdist(bin7, 'gamma') 
pd_8 = fitdist(bin8, 'gamma') 
pd_9 = fitdist(bin9, 'gamma') 
pd_10 = fitdist(bin10, 'gamma') 
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Appendix B 

The following Appendix contains the 500m x 500m gridded events from the FDHI database for 
determining the probability of nonzero distributed displacements. Notes: 

1) Red lines are principal faults and blue lines are distributed faults. 
2) Green circles indicate distributed ruptures on hanging wall and magenta crosses indicate 

distributed ruptures on footwall. 
3) Sometimes it is difficult to determine HW or FW if an event has complex principal faults. 

For example, the Kaikoura earthquake. 
4) An event may have no distributed rupture. For example, the Marryat Creek earthquake. 
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Appendix C 

The following appendix contains the PFDHA code for calculating hazard curves for average 
displacement (AD), maximum displacement (MD), and distributed displacement (d).  The code 
is all written in MatLab and requires the Statistics and Machine Learning Toolbox. 

Average Displacement (AD) 
--------------------------------------------------------------------------------------------------------------------- 
 
--------------------------------------------------------------------------------------------------------------------- 
 
% Probabilistic Fault Displacement Hazard Analysis (PFDHA) 
% Moss et al procedure for Average Displacement 
% Last updated 12/18/23 
 
clear all; close all; clc; 
 
tic 
disp(' '); 
disp('computing...........please wait'); 
 
%b-value for the regional seismotectonics 
b_value = 0.8; 
 
%shear modulus in dyne/cm^2 
shear_modulus = 3.75*10^11; 
 
%magnitude range for fault 
min_mag = 5.0;  
max_mag = 7.0; 
 
%Length/Width in km of fault 
length = 44; 
width =  14; 
 
area = length*(1000*100)*width*(1000*100); %in cm^2 
 
%shear wave velocity of the near surface material 
vs30=700; 
 
%location of interest along fault 
%this has been descritized into 50 increments so a normalized bin range of  
%0 to 0.1 equates to xL_min=1 and xL_max=10, for a bin range of 0.4 to 0.5  
%equates to xL_min=41 and xL_max=50... 
xL_min=21; 
xL_max=30; 
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%slip rate in cm/year back calculated from IAEA rate (eq_yr) that was given 
%in research request and needs to be entered below 
%eq_yr=1*10^-3; 
 
%Mo_eq=10^((3/2)*(max_mag+10.7)); %back calculating the seismic moment 
%slip_rate = (Mo_eq * eq_yr) / (shear_modulus * area); %cm/yr 
 
slip_rate=0.05; %cm/year 
 
%The Truncated Exponential model is used to account for the variability in 
%earthquake magnitudes  
mag = 1 : 1 : 251; 
 
%magnitude range for this particular problem (0.01 bins) 
beta = log(10)*b_value; 
 
%number of simulations 
sim=10000; 
 
%probability density function for truncated exponential 
f_m = beta * exp(-beta * (5+(2/250) * (mag - 1) - min_mag)) / (1-exp(-beta * (max_mag-min_mag))); 
 
dm = 0.008; 
dr = 0.01; 
 
denom = 0; 
 
for s = 1 : 1 : 250 
     
denom = ( f_m(s) * 10^(1.5 * (5+(2/250) * (s - 1)) + 16.05) + f_m(s + 1) * 10^(1.5 * (5+(2/250) * (s)) + 
16.05) )* dm/2 + denom; 
 
end 
 
N_m_min = shear_modulus*area*slip_rate / denom; 
 
 
%The probability of displacement can be expressed as a function of two 
%probabilities   P(D>d|M,r) = P(Slip|M,r)*P(D>d|M,r,Slip) 
 
%The first term is the probability that fault displacement will occur given 
%that an earthquake has occurred P(Slip|M,r) is modeled using the following 
%function per Youngs et al. equation 4: 
%P(Slip|M,r)= exp(f(x)) / (1+ exp(f(x)) where f(x)=a+bM from regression 
%Youngs et al found that for all events world wide they analyzed the coefficients 
%were a = -12.51 and b = 2.053 
%prn = exp(a + b * (5+(2/250) * (mag-1))); 
%prd = 1 + exp(a + b * (5+(2/250) * (mag-1))); 
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%pr_slip = prn ./ prd ; 
 
%The logistic regression results specific to reverse events from Moss & Ross  
%2011 BSSA are in the form of the logistic function:  
%P(Slip|M,r)= 1/(1+exp(f(x)) where f(x) is the same as above. 
 
%a=7.3; 
%b=-1.03; 
%pr_slip = 1./ (1 + exp(a + b * (5+(2/250) * (mag-1)))); 
 
%The logistic regression results were improved upon in Moss et al 2013 and 
%an additional variable was added, VS30 of the projection of the 
%rupture plane from depth.  The logistic equation is the same but the 
%fuction now includes VS30 as a predictor: P(Slip|M,r,VS30)=1/(1+exp(-z)) 
%where z=-13.9745+2.1395*M for VS30>600m/s "stiff" materials 
%      z=-6.2548+0.8308*M  for VS30<600m/s "soft" materials 
 
if vs30>600  
pr_slip = 1./(1 + exp(-(-13.9745 + 2.1395 * (5+(2/250) * (mag-1))))); 
else 
pr_slip = 1./(1 + exp(-(-6.2548 + 0.8308 * (5+(2/250) * (mag-1))))); 
end 
 
 
%The second term in the probability of displacement defines the conditional 
%distribution of the amount of fault displacement given that slip has 
%occurred.  This term is analogous to an attenuation relationship and is 
%constructed using empirical data.  We want a distribution that captures 
%the variability of fault displacement at the site with respect to the 
%entire rupture. 
 
%We are choosing to proceed here via Monte Carlo integration, the output of 
%which will be inserted into the double integral over m and r to obtain the 
%final probabilities. 
 
%There are two terms here, the probability of D/MD or D/AD at any location 
%and the probability of MD or AD.  An empirical fit cumulative gamma 
%distribution maps the P(D/AD) for a given x/L ratio, which is convolved 
%with the P(AD) or P(MD) to arrive at the conditional probability of D. 
 
%We now solve for the rupture displacement where the variable is treated as  
%lognormally distributed. 
 
%m will go from 1 to 251, therefore the magnitude itself will range from 
%5-7 based on the scaling relation specified below.  r will vary from 1 to 
%51 and therefore vary x/L from 0 to 0.5, based on scaling relation specified 
%below. 
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nu = zeros(28, 2); 
   
 
probDd = zeros(51, 251, 28); 
      
 
for m = 1 : 1 : 251 %this gives the mag bins from 5-7 
 
 
    for r = 1 : 1 : 51 %this gives the x/L bins from 0 to 0.5 with  
                       %the range for r=1:1:51 with the start value, 
                       %increment, and end value 
 
        %this part creates a monte carlo for a given value of m and x 
         
        %A is the Prob(AD|M) from linear regression (compared to Wells and 
        %Coppersmith regression) 0.148 * 2.302 is the standard deviation 
  
         
        %B is the Prob(D/AD|M,r) from statistical fitting of gamma  
 
        A = trlnrnd(mu((5+(2/250) * (m - 1))) , 0.148*2.302, sim); 
         
        B = gamrnd(a_gam(0.5*(r - 1)/50), b_gam(0.5*(r - 1)/50), 1, sim); 
 
 
        %This next line takes a product of the random variables A and B 
        %stated above.  It is computed by simply multiplying element n of A 
        %by element n of B to form combine(n).  This provides the product 
        %of P(AD)*P(D/AD) 
 
        combine = A.*B; 
 
         
        %here a histogram is created from the data after the product of 
        %random variables has occurred, with 1000 bins as the default. 
         
        [n, Dbin] = hist(combine, 1000); 
         
        cdf = zeros(1000,1); 
         
        %CDF is created here by summing up bin weight from the left and 
        %normalizing by total number of data points. 
         
        cdf(1) = n(1); 
 
 
        for u = 2:1:1000 
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            cdf(u) = n(u) + cdf(u-1); 
 
        end 
 
        invcdf = 1 - cdf/cdf(1000); 
 
 
        %This is now the inv_CDF for a given value of x and m, but we need 
        %to pull a specific value from it at d.  This wil be done by a 
        %difference algorithm to grab the right value. The sensitivity is 
        %set to 0.01 
 
        %d is just a dummy index 
         
        d = 1; 
 
         
        %Here we set the range for the values of displacement we want. 
        %Each value of D will yield a new rate of events exceeding D, so 
        %the output of this PFDHA will yield nu(D). 
         
        v = 0.01; 
      
         
        D = 0.01; 
         
         
        while D <= 10 
       
            nu(d, 1) = D; 
                
            %1000 is the last index in the CDF array.  therefore the next 
            %loop goes up until 1000.  It looks at every element of the 
            %Dbin array and subtracts that value from the value of D 
            %specified above.  If the difference is less than the 
            %sensitivity of 0.01, it pulls that value out of the array and 
            %sticks it in our new discrete inverted CDF for D > D. 
             
            for i = 1 : 1 : 1000 
 
                AA = D - Dbin(i);  
 
                    if abs(AA) < 0.01 
 
                        probDd(r, m, d) = invcdf(i, 1); 
                        break 
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                    end 
 
 
                % This clause in the for loop executes if the difference 
                % algorithm has failed.  In other words, if no value of D 
                % is found to satisfy the sensitivity algorithm it 
                % Calls a spline based interpolation function--but first  
                % checks to see if D is larger than the bounds of Dbin. 
                % If so it forces the probability to be zero, otherwise it 
                % interpolates. 
 
 
                    if i == 1000 
 
 
                        if D > max(Dbin) 
 
                            probDd(r, m, d) = 0; 
 
                        else 
                             
                            probDd(r, m, d) = interp1(Dbin, invcdf, D, 'spline'); 
 
                        end 
 
                    end 
 
            end 
             
             
             
            %incrementing the dummy index 
         
        d = d + 1; 
        D = D + v; 
        
         
            if D <= 0.9 && D > 0.09 
 
 
                v=0.1; 
 
 
            end 
 
 
 
            if D > 0.9 
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                v=1; 
 
 
            end 
         
         
         
        end 
 
    end 
 
 
 
end 
 
 
    %probDd now is a full Matrix.  Since we have complete arrays for 
    %all three probability terms in the PFDHA integral, we now proceed to 
    %calculate the rate of events per year which exceed a given value of D. 
 
    %initializing nu to 0 before sum. 
 
    %250 blocks here instead of 251 since there are 251 points and 250 
    %actual rectangular volumes to integrate over. 
 
     
%dd here is set to a maximum of 10 different values of D to compute nu for 
%if number of D values specified above is less than 10, the remainder will 
%show up as nu = 0 in the terminal. 
 
 
%dd is a dummy index for a specific place in the prob(D>d) array.  it will 
%go from 1 to 10 and each index corresponds to the probability for a given 
%value of D from above.  So if D above went from 0.01 : 0.01 : 0.1, dd = 1 
%would be D = 0.01, dd = 2 is D = 0.02, and so forth. 
 
 
for dd = 1 : 1 : 28 
     
    disp('.') 
     
    %initializing nu as zero before sum starts 
    rate = 0; 
     
    for mm = 1 : 1 : 250 % magnitude range discretized into 205 increments 
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        for rr = xL_min : 1 : xL_max % x/L range discretized into 50 increments with 
                                     % with full range of 1:1:50 
 
            %here averaging over 4 square distanced datapoints and 
            %discretely computing the integral (sum) 
 
            rate = N_m_min*((f_m(mm) * probDd(rr, mm, dd) * pr_slip(mm) + f_m(mm) * probDd(rr+1, mm, dd) 
* pr_slip(mm) + f_m(mm+1) * probDd(rr+1, mm+1, dd) * pr_slip(mm+1) + f_m(mm+1) * probDd(rr, mm+1, 
dd) * pr_slip(mm+1))/4) * dm * dr + rate; 
 
 
        end 
 
 
    end 
 
    nu(dd, 2) = rate; 
    rate; 
 
end 
 
 
loglog(nu(:,1), nu(:,2)) 
xlabel('Displacment (m)') 
ylabel('Annual Probability of Exceedance') 
axis('tight'); 
set(gca,'FontSize',16,'FontWeight','bold') 
grid on; 
toc 
 
--------------------------------------------------------------------------------------------------------------------- 
 
function a_gamout = a_gam(xL) 
 
a_gamout = 4.2797*xL + 1.6216; 
 
end 
 
%this is the a term in the gamma distribution fit to D/AD data 
 

--------------------------------------------------------------------------------------------------------------------- 
function b_gamout = b_gam(xL) 
 
b_gamout = -0.5003*xL + 0.5133; 
 
end 
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%this is the b term in the gamma distribution fit to the D/AD data 
 
--------------------------------------------------------------------------------------------------------------------- 
 
function muout = mu(mag) 
a_AD = -2.87; 
b_AD = 0.416; 
muout = log(10^(a_AD + b_AD*mag)); 
end 
 
%this is the a and b linear regression terms for P(AD|M,r) 
%for all data in Mea21 the equation is log10(AD)=0.39871*Mw-2.75606 
%for FDHI data only the equation becomes log10(AD)=0.4395*Mw-3.0396 
%Note: there is virtually no difference in these equations 
 
%for complete rupture in Mea22          log10(AD)=0.416*Mw-2.87 
 
--------------------------------------------------------------------------------------------------------------------- 
 
function truncout = trlnrnd(mu, sigma, n) 
%monte carlo sampling for a truncated lognormal distribution.  zmax is the 
%maximum value where truncation occurs, here it is specified as AD = 15m. 
%n random numbers between 0 and zmax are generated and thrown into the 
%Inverted CDF for a truncated lognormal distribution, then pass them back. 
 
z = unifrnd(0, 1, 1, n); 
 
%truncout = exp(sqrt(2*sigma*sigma)*erfinv(2*z*(logncdf(log(15), mu, sigma)) - 1) + mu); 
 
epsilon_max=5; 
 
cdf_min=logncdf(exp(mu-epsilon_max*sigma),mu,sigma); 
 
cdf_max=logncdf(exp(mu+epsilon_max*sigma),mu,sigma); 
 
truncout=exp(sigma*sqrt(2)*erfinv(2*(z-0.5)*(cdf_max-cdf_min))+mu); 
 
end 
 
--------------------------------------------------------------------------------------------------------------------- 
 
--------------------------------------------------------------------------------------------------------------------- 
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Maximum Displacement (MD) 
 
--------------------------------------------------------------------------------------------------------------------- 
 
--------------------------------------------------------------------------------------------------------------------- 
 

% Probabilistic Fault Displacement Hazard Analysis (PFDHA) 
% Moss et al procedure for Maximum Displacement 
% Last updated 12/18/23 
 
clear all; close all; clc; 
 
tic 
disp(' '); 
disp('computing...........please wait'); 
 
%b-value for the regional seismotectonics 
b_value = 0.8; 
 
%shear modulus in dyne/cm^2 
shear_modulus = 3.75*10^11; 
 
%magnitude range for fault 
min_mag = 5.0;  
max_mag = 7.5; 
 
%Length/Width in km of fault 
length = 100; 
width =  15; 
 
area = length*(1000*100)*width*(1000*100); %in cm^2 
 
%shear wave velocity of the near surface material 
vs30=700; 
 
%location of interest along fault 
%this has been descritized into 50 increments so a normalized bin range of  
%0 to 0.1 equates to xL_min=1 and xL_max=10, for a bin range of 0.4 to 0.5  
%equates to xL_min=41 and xL_max=50... 
xL_min=41; 
xL_max=50; 
 
%slip rate in cm/year back calculated from IAEA rate (eq_yr) that was given 
%in research request and needs to be entered below 
%eq_yr=1*10^-3; 
 
%Mo_eq=10^((3/2)*(max_mag+10.7)); %back calculating the seismic moment 
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%slip_rate = (Mo_eq * eq_yr) / (shear_modulus * area); %cm/yr 
slip_rate= 0.5; %cm/yr 
 
%The Truncated Exponential model is used to account for the variability in 
%earthquake magnitudes  
mag = 1 : 1 : 251; 
 
%magnitude range for this particular problem (0.01 bins) 
beta = log(10)*b_value; 
 
%number of simulations 
sim=10000; 
 
%probability density function for truncated exponential 
f_m = beta * exp(-beta * (5+(2/250) * (mag - 1) - min_mag)) / (1-exp(-beta * (max_mag-min_mag))); 
 
dm = 0.008; 
dr = 0.01; 
 
denom = 0; 
 
for s = 1 : 1 : 250 
     
denom = ( f_m(s) * 10^(1.5 * (5+(2/250) * (s - 1)) + 16.05) + f_m(s + 1) * 10^(1.5 * (5+(2/250) * (s)) + 
16.05) )* dm/2 + denom; 
 
end 
 
N_m_min = shear_modulus*area*slip_rate / denom; 
 
 
%The probability of displacement can be expressed as a function of two 
%probabilities   P(D>d|M,r) = P(Slip|M,r)*P(D>d|M,r,Slip) 
 
%The first term is the probability that fault displacement will occur given 
%that an earthquake has occurred P(Slip|M,r) is modeled using the following 
%function per Youngs et al. equation 4: 
%P(Slip|M,r)= exp(f(x)) / (1+ exp(f(x)) where f(x)=a+bM from regression 
%Youngs et al found that for all events world wide they analyzed the coefficients 
%were a = -12.51 and b = 2.053 
%prn = exp(a + b * (5+(2/250) * (mag-1))); 
%prd = 1 + exp(a + b * (5+(2/250) * (mag-1))); 
%pr_slip = prn ./ prd ; 
 
%The logistic regression results specific to reverse events from Moss & Ross  
%2011 BSSA are in the form of the logistic function:  
%P(Slip|M,r)= 1/(1+exp(f(x)) where f(x) is the same as above. 
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%a=7.3; 
%b=-1.03; 
%pr_slip = 1./ (1 + exp(a + b * (5+(2/250) * (mag-1)))); 
 
%The logistic regression results were improved upon in Moss et al 2013 and 
%an additional variable was added, VS30 of the projection of the 
%rupture plane from depth.  The logistic equation is the same but the 
%fuction now includes VS30 as a predictor: P(Slip|M,r,VS30)=1/(1+exp(-z)) 
%where z=-13.9745+2.1395*M for VS30>600m/s "stiff" materials 
%      z=-6.2548+0.8308*M  for VS30<600m/s "soft" materials 
 
if vs30>600  
pr_slip = 1./(1 + exp(-(-13.9745 + 2.1395 * (5+(2/250) * (mag-1))))); 
else 
pr_slip = 1./(1 + exp(-(-6.2548 + 0.8308 * (5+(2/250) * (mag-1))))); 
end 
 
 
%The second term in the probability of displacement defines the conditional 
%distribution of the amount of fault displacement given that slip has 
%occurred.  This term is analogous to an attenuation relationship and is 
%constructed using empirical data.  We want a distribution that captures 
%the variability of fault displacement at the site with respect to the 
%entire rupture. 
 
%We are choosing to proceed here via Monte Carlo integration, the output of 
%which will be inserted into the double integral over m and r to obtain the 
%final probabilities. 
 
%There are two terms here, the probability of D/MD or D/AD at any location 
%and the probability of MD or AD.  An empirical fit cumulative gamma 
%distribution maps the P(D/AD) for a given x/L ratio, which is convolved 
%with the P(AD) or P(MD) to arrive at the conditional probability of D. 
 
%We now solve for the rupture displacement where the variable is treated as  
%lognormally distributed. 
 
%m will go from 1 to 251, therefore the magnitude itself will range from 
%5-7 based on the scaling relation specified below.  r will vary from 1 to 
%51 and therefore vary x/L from 0 to 0.5, based on scaling relation specified 
%below. 
 
nu = zeros(28, 2); 
   
 
probDd = zeros(51, 251, 28); 
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for m = 1 : 1 : 251 %this gives the mag bins from 5-7 
 
    %disp('.')  
 
    for r = 1 : 1 : 51 %this gives the x/L bins from 0 to 0.5 with  
                       %the range for r=1:1:51 with the start value, 
                       %increment, and end value 
                     
 
        %this part creates a monte carlo for a given value of m and x 
         
        %A is the Prob(MD|M) from linear regression (compared to Wells and 
        %Coppersmith regression) 0.133 * 2.302 is the standard deviation 
         
        %B is the Prob(D/MD|M,r) from statistical fitting of gamma or 
        %weibull distributions 
 
        A = trlnrnd(mu((5+(2/250) * (m - 1))) , 0.133*2.302, sim); 
         
        B = gamrnd(a_gam(0.5*(r - 1)/50), b_gam(0.5*(r - 1)/50), 1, sim); 
  
        B(B>=1)=1; %truncating the gamma distribution 
 
        %This next line takes a product of the random variables A and B 
        %stated above.  It is computed by simply multiplying element n of A 
        %by element n of B to form combine(n).  This provides the product 
        %of P(MD)*P(D/MD) 
 
        combine = A.*B; 
 
         
        %here a histogram is created from the data after the product of 
        %random variables has occurred, with 1000 bins as the default. 
         
        [n, Dbin] = hist(combine, 1000); 
         
        cdf = zeros(1000,1); 
         
        %CDF is created here by summing up bin weight from the left and 
        %normalizing by total number of data points. 
         
        cdf(1) = n(1); 
 
 
        for u = 2:1:1000 
 
            cdf(u) = n(u) + cdf(u-1); 
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        end 
 
        invcdf = 1 - cdf/cdf(1000); 
 
 
        %This is now the inv_CDF for a given value of x and m, but we need 
        %to pull a specific value from it at d.  This wil be done by a 
        %difference algorithm to grab the right value. The sensitivity is 
        %set to 0.01 
 
        %d is just a dummy index 
         
        d = 1; 
 
         
        %Here we set the range for the values of displacement we want. 
        %Each value of D will yield a new rate of events exceeding D, so 
        %the output of this PFDHA will yield nu(D). 
         
        v = 0.01; 
      
         
        D = 0.01; 
         
         
        while D <= 10 
       
            nu(d, 1) = D; 
                
            %1000 is the last index in the CDF array.  therefore the next 
            %loop goes up until 1000.  It looks at every element of the 
            %Dbin array and subtracts that value from the value of D 
            %specified above.  If the difference is less than the 
            %sensitivity of 0.01, it pulls that value out of the array and 
            %sticks it in our new discrete inverted CDF for D > D. 
             
            for i = 1 : 1 : 1000 
 
                AA = D - Dbin(i);  
 
                    if abs(AA) < 0.01 
 
                        probDd(r, m, d) = invcdf(i, 1); 
                        break 
 
                    end 
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                % This clause in the for loop executes if the difference 
                % algorithm has failed.  In other words, if no value of D 
                % is found to satisfy the sensitivity algorithm it 
                % Calls a spline based interpolation function--but first  
                % checks to see if D is larger than the bounds of Dbin. 
                % If so it forces the probability to be zero, otherwise it 
                % interpolates. 
 
 
                    if i == 1000 
 
 
                        if D > max(Dbin) 
 
                            probDd(r, m, d) = 0; 
 
                        else 
                             
                            probDd(r, m, d) = interp1(Dbin, invcdf, D, 'spline'); 
 
                        end 
 
                    end 
 
            end 
             
             
             
            %incrementing the dummy index 
         
        d = d + 1; 
        D = D + v; 
        
         
            if D <= 0.9 && D > 0.09 
 
 
                v=0.1; 
 
 
            end 
 
 
 
            if D > 0.9 
 
 
                v=1; 
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            end 
         
         
         
        end 
 
    end 
 
 
 
end 
 
 
    %probDd now is a full Matrix.  Since we have complete arrays for 
    %all three probability terms in the PFDHA integral, we now proceed to 
    %calculate the rate of events per year which exceed a given value of D. 
 
    %initializing nu to 0 before sum. 
 
    %250 blocks here instead of 251 since there are 251 points and 250 
    %actual rectangular volumes to integrate over. 
 
     
%dd here is set to a maximum of 10 different values of D to compute nu for 
%if number of D values specified above is less than 10, the remainder will 
%show up as nu = 0 in the terminal. 
 
 
%dd is a dummy index for a specific place in the prob(D>d) array.  it will 
%go from 1 to 10 and each index corresponds to the probability for a given 
%value of D from above.  So if D above went from 0.01 : 0.01 : 0.1, dd = 1 
%would be D = 0.01, dd = 2 is D = 0.02, and so forth. 
 
 
for dd = 1 : 1 : 28 
     
    disp('.') 
     
    %initializing nu as zero before sum starts 
    rate = 0; 
     
    for mm = 1 : 1 : 250 % magnitude range discretized into 205 increments 
    
         
        for rr = xL_min : 1 : xL_max % x/L range discretized into 50 increments with 
                                     % with full range of 1:1:50 
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            %here averaging over 4 square distanced datapoints and 
            %discretely computing the integral (sum) 
 
            rate = N_m_min*((f_m(mm) * probDd(rr, mm, dd) * pr_slip(mm) + f_m(mm) * probDd(rr+1, mm, dd) 
* pr_slip(mm) + f_m(mm+1) * probDd(rr+1, mm+1, dd) * pr_slip(mm+1) + f_m(mm+1) * probDd(rr, mm+1, 
dd) * pr_slip(mm+1))/4) * dm * dr + rate; 
 
 
        end 
 
 
    end 
 
    nu(dd, 2) = rate; 
    rate; 
 
end 
 
 
loglog(nu(:,1), nu(:,2)) 
xlabel('Displacment (m)') 
ylabel('Annual Probability of Exceedance') 
axis('tight'); 
set(gca,'FontSize',16,'FontWeight','bold') 
grid on; 
toc 
 

--------------------------------------------------------------------------------------------------------------------- 
 
function a_gamout = a_gam(xL) 
 
a_gamout = 1.4244*xL + 1.856; 
 
end 
 
%this is the a term in the gamma distribution fit to D/MD data 
--------------------------------------------------------------------------------------------------------------------- 
 

function b_gamout = b_gam(xL) 
 
b_gamout = -0.0832*xL +0.1994; 
 
end 
 
%this is the b term in the gamma distribution fit to the D/MD data 
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--------------------------------------------------------------------------------------------------------------------- 
 

function muout = mu(mag) 
a_MD = -2.5; 
b_MD = 0.415; 
sigma_mu = 0.148;  %add sigmas for non-median values 
muout = log(10^(a_MD + b_MD*mag + sigma_mu)); 
end 
 
%this is the a and b linear regression terms for P(MD|M,r) 
%for all data in Mea22 the equation is  log10(MD)=0.40126*Mw-2.59939  
%for FDHI data only in Mea22 it becomes log10(MD)=0.48150*Mw-2.9305 
%for complete rupture in Mea22 it becomes log10(MD)=0.415*Mw-2.50 
%for non-median values log10(MD)=0.415*Mw-2.5+(#sigmas*0.148) 
 

--------------------------------------------------------------------------------------------------------------------- 
 

function truncout = trlnrnd(mu, sigma, n) 
 
%monte carlo sampling for a truncated lognormal distribution.  zmax is the 
%maximum value where truncation occurs, here it is specified as MD = 15m. 
%n random numbers between 0 and zmax are generated and thrown into the 
%Inverted CDF for a truncated lognormal distribution, then pass them back. 
 
z = unifrnd(0, 1, 1, n); 
 
%truncout = exp(sqrt(2*sigma*sigma)*erfinv(2*z*(logncdf(log(15), mu, sigma)) - 1) + mu); 
 
epsilon_max=5;  %based on DBA's corrections 9/14/23 
 
cdf_min=logncdf(exp(mu-epsilon_max*sigma),mu,sigma); 
 
cdf_max=logncdf(exp(mu+epsilon_max*sigma),mu,sigma); 
 
truncout=exp(sigma*sqrt(2)*erfinv(2*(z-0.5)*(cdf_max-cdf_min))+mu); 
 
 
end 
 
--------------------------------------------------------------------------------------------------------------------- 
--------------------------------------------------------------------------------------------------------------------- 
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Distributed Displacement (d) 

 
--------------------------------------------------------------------------------------------------------------------- 
 

--------------------------------------------------------------------------------------------------------------------- 
 
% Probabilistic Fault Displacement Hazard Analysis (PFDHA) 
% Moss et al for distributed or off-fault displacement 
% Last revised 12/18/23 
 
clear all; close all; clc; 
 
tic 
disp(' '); 
disp('computing...........please wait'); 
 
%b-value for the regional seismotectonics 
b_value = 0.8; 
 
%shear modulus in dyne/cm^2 
shear_modulus = 3.75*10^11; 
 
%magnitude range for fault 
min_mag = 5.0;  
max_mag = 7.5; 
 
%Length/Width in km of fault 
length = 100; 
width =  15; 
 
area = length*(1000*100)*width*(1000*100); %in cm^2 
 
%shear wave velocity of the near surface material 
%stiff>600m/s soft<600m/s 
vs30=700; 
 
%location of interest along fault 
%this has been descritized into 50 increments so a normalized bin range of  
%0 to 0.1 equates to xL_min=1 and xL_max=10, for a bin range of 0.4 to 0.5  
%equates to xL_min=41 and xL_max=50... 
xL_min=41; 
xL_max=50; 
 
%r_dist is the distance from fault strike in meters 
%wall is the flag for hanging wall wall=1 or foot wall wall=0  
%complex is the flag for simple fault (0) or complex multi-fault system (1) 
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%mbc is the flag for magnitude bin center mbc=7.5, or 6.5, or 5.5 
r_dist=3000; %meters 
wall=1; 
complex=0; 
mbc=7.5; 
 
%slip rate in cm/year back calculated from IAEA rate (eq_yr) that was given 
%in research request and needs to be entered below 
%eq_yr=1*10^-3; 
 
%Mo_eq=10^((3/2)*(max_mag+10.7)); %back calculating the seismic moment 
%slip_rate = (Mo_eq * eq_yr) / (shear_modulus * area); %cm/yr 
slip_rate= 0.5; %cm/yr 
 
%The Truncated Exponential model is used to account for the variability in 
%earthquake magnitudes  
mag = 1 : 1 : 251; 
 
%magnitude range for this particular problem (0.01 bins) 
beta = log(10)*b_value; 
 
%number of simulations 
sim=10000; 
 
%probability density function for truncated exponential 
f_m = beta * exp(-beta * (5+(2/250) * (mag - 1) - min_mag)) / (1-exp(-beta * (max_mag-min_mag))); 
 
dm = 0.008; 
dr = 0.01; 
 
denom = 0; 
 
for s = 1 : 1 : 250 
     
denom = ( f_m(s) * 10^(1.5 * (5+(2/250) * (s - 1)) + 16.05) + f_m(s + 1) * 10^(1.5 * (5+(2/250) * (s)) + 
16.05) )* dm/2 + denom; 
 
end 
 
N_m_min = shear_modulus*area*slip_rate / denom; 
 
 
%The probability of displacement can be expressed as a function of two 
%probabilities   P(D>d|M,r) = P(Slip|M,r)*P(D>d|M,r,Slip) 
 
%The first term is the probability that fault displacement will occur given 
%that an earthquake has occurred P(Slip|M,r) is modeled using the following 
%function per Youngs et al. equation 4: 
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%P(Slip|M,r)= exp(f(x)) / (1+ exp(f(x)) where f(x)=a+bM from regression 
%Youngs et al found that for all events world wide they analyzed the coefficients 
%were a = -12.51 and b = 2.053 
%prn = exp(a + b * (5+(2/250) * (mag-1))); 
%prd = 1 + exp(a + b * (5+(2/250) * (mag-1))); 
%pr_slip = prn ./ prd ; 
 
%The logistic regression results specific to reverse events from Moss & Ross  
%2011 BSSA are in the form of the logistic function:  
%P(Slip|M,r)= 1/(1+exp(f(x)) where f(x) is the same as above. 
 
%a=7.3; 
%b=-1.03; 
%pr_slip = 1./ (1 + exp(a + b * (5+(2/250) * (mag-1)))); 
 
%The logistic regression results were improved upon in Moss et al 2013 and 
%an additional variable was added, VS30 of the projection of the 
%rupture plane from depth.  The logistic equation is the same but the 
%fuction now includes VS30 as a predictor: P(Slip|M,r,VS30)=1/(1+exp(-z)) 
%where z=-13.9745+2.1395*M for VS30>600m/s "stiff" materials 
%      z=-6.2548+0.8308*M  for VS30<600m/s "soft" materials 
 
if vs30>600  
pr_slip = 1./(1 + exp(-(-13.9745 + 2.1395 * (5+(2/250) * (mag-1))))); 
else 
pr_slip = 1./(1 + exp(-(-6.2548 + 0.8308 * (5+(2/250) * (mag-1))))); 
end 
 
 
%The second term in the probability of displacement defines the conditional 
%distribution of the amount of fault displacement given that slip has 
%occurred.  This term is analogous to an attenuation relationship and is 
%constructed using empirical data.  We want a distribution that captures 
%the variability of fault displacement at the site with respect to the 
%entire rupture. 
 
%We are choosing to proceed here via Monte Carlo integration, the output of 
%which will be inserted into the double integral over m and r to obtain the 
%final probabilities. 
 
%There are two terms here, the probability of D/MD or D/AD at any location 
%and the probability of MD or AD.  An empirical fit cumulative gamma 
%distribution maps the P(D/AD) for a given x/L ratio, which is convolved 
%with the P(AD) or P(MD) to arrive at the conditional probability of D. 
 
%We now solve for the rupture displacement where the variable is treated as  
%lognormally distributed. 
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%m will go from 1 to 251, therefore the magnitude itself will range from 
%5-7 based on the scaling relation specified below.  r will vary from 1 to 
%51 and therefore vary x/L from 0 to 0.5, based on scaling relation specified 
%below. 
 
nu = zeros(28, 2); 
   
 
probDd = zeros(51, 251, 28); 
      
 
for m = 1 : 1 : 251 %this gives the mag bins from 5-7 
 
    %disp('.')  
 
    for r = 1 : 1 : 51 %this gives the x/L bins from 0 to 0.5 with  
                       %the range for r=1:1:51 with the start value, 
                       %increment, and end value 
                     
 
        %this part creates a monte carlo for a given value of m and x 
         
        %A is the Prob(MD|M) from linear regression (compared to Wells and 
        %Coppersmith regression) 0.133 * 2.302 is the standard deviation 
         
        %B is the Prob(D/MD|M,r) from statistical fitting of gamma or 
        %weibull distributions 
 
        A = trlnrnd(mu((5+(2/250) * (m - 1))) , 0.133*2.302, sim); 
         
        B = gamrnd(a_gam(0.5*(r - 1)/50), b_gam(0.5*(r - 1)/50), 1, sim); 
 

  B(B>=1)=1; %truncating the gamma distribution 
 
        %This next line takes a product of the random variables A and B 
        %stated above.  It is computed by simply multiplying element n of A 
        %by element n of B to form combine(n).  This provides the product 
        %of P(MD)*P(D/MD) 
 
        combine = A.*B; 
 
         
        %here a histogram is created from the data after the product of 
        %random variables has occurred, with 1000 bins as the default. 
         
        [n, Dbin] = hist(combine, 1000); 
         
        cdf = zeros(1000,1); 
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        %CDF is created here by summing up bin weight from the left and 
        %normalizing by total number of data points. 
         
        cdf(1) = n(1); 
 
 
        for u = 2:1:1000 
 
            cdf(u) = n(u) + cdf(u-1); 
 
        end 
 
        invcdf = 1 - cdf/cdf(1000); 
 
 
        %This is now the inv_CDF for a given value of x and m, but we need 
        %to pull a specific value from it at d.  This wil be done by a 
        %difference algorithm to grab the right value. The sensitivity is 
        %set to 0.01 
 
        %d is just a dummy index 
         
        d = 1; 
 
         
        %Here we set the range for the values of displacement we want. 
        %Each value of D will yield a new rate of events exceeding D, so 
        %the output of this PFDHA will yield nu(D). 
         
        v = 0.01; 
      
         
        D = 0.01; 
         
         
        while D <= 10 
       
            nu(d, 1) = D; 
                
            %1000 is the last index in the CDF array.  therefore the next 
            %loop goes up until 1000.  It looks at every element of the 
            %Dbin array and subtracts that value from the value of D 
            %specified above.  If the difference is less than the 
            %sensitivity of 0.01, it pulls that value out of the array and 
            %sticks it in our new discrete inverted CDF for D > D. 
             
            for i = 1 : 1 : 1000 
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                AA = D - Dbin(i);  
 
                    if abs(AA) < 0.01 
 
                        probDd(r, m, d) = invcdf(i, 1); 
                        break 
 
                    end 
 
 
                % This clause in the for loop executes if the difference 
                % algorithm has failed.  In other words, if no value of D 
                % is found to satisfy the sensitivity algorithm it 
                % Calls a spline based interpolation function--but first  
                % checks to see if D is larger than the bounds of Dbin. 
                % If so it forces the probability to be zero, otherwise it 
                % interpolates. 
 
 
                    if i == 1000 
 
 
                        if D > max(Dbin) 
 
                            probDd(r, m, d) = 0; 
 
                        else 
                             
                            probDd(r, m, d) = interp1(Dbin, invcdf, D, 'spline'); 
 
                        end 
 
                    end 
 
            end 
             
             
             
            %incrementing the dummy index 
         
        d = d + 1; 
        D = D + v; 
        
         
            if D <= 0.9 && D > 0.09 
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                v=0.1; 
 
 
            end 
 
 
 
            if D > 0.9 
 
 
                v=1; 
 
 
            end 
         
         
         
        end 
 
    end 
 
 
 
end 
 
 
    %probDd now is a full Matrix.  Since we have complete arrays for 
    %all three probability terms in the PFDHA integral, we now proceed to 
    %calculate the rate of events per year which exceed a given value of D. 
 
    %initializing nu to 0 before sum. 
 
    %250 blocks here instead of 251 since there are 251 points and 250 
    %actual rectangular volumes to integrate over. 
 
     
%dd here is set to a maximum of 10 different values of D to compute nu for 
%if number of D values specified above is less than 10, the remainder will 
%show up as nu = 0 in the terminal. 
 
 
%dd is a dummy index for a specific place in the prob(D>d) array.  it will 
%go from 1 to 10 and each index corresponds to the probability for a given 
%value of D from above.  So if D above went from 0.01 : 0.01 : 0.1, dd = 1 
%would be D = 0.01, dd = 2 is D = 0.02, and so forth. 
 
 
for dd = 1 : 1 : 28 
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    disp('.') 
     
    %initializing nu as zero before sum starts 
    rate = 0; 
     
    for mm = 1 : 1 : 250 % magnitude range discretized into 205 increments 
    
         
        for rr = xL_min : 1 : xL_max % x/L range discretized into 50 increments with 
                                     % with full range of 1:1:50 
 
            %here averaging over 4 square distanced datapoints and 
            %discretely computing the integral (sum) 
 
            rate = N_m_min*((f_m(mm) * probDd(rr, mm, dd) * pr_slip(mm) + f_m(mm) * probDd(rr+1, mm, dd) 
* pr_slip(mm) + f_m(mm+1) * probDd(rr+1, mm+1, dd) * pr_slip(mm+1) + f_m(mm+1) * probDd(rr, mm+1, 
dd) * pr_slip(mm+1))/4) * dm * dr + rate; 
 
 
        end 
 
 
    end 
 
    nu(dd, 2) = rate; 
    rate; 
 
end 
 
%adjustment of hazard curve from MD to d which includes: 
%1) the probability of occurrence term P(d>0),  
%2) probability of exceedence term P(d>do), and 
%3) the d/MD term for scaling 
 
%note: wall=1 is hanging wall and wall=0 is foot wall 
 
     
if wall==1 %hanging wall 
 
  %prob nonzero for hanging wall at 85th percentile 
    pd0HW = exp(-2.2 * r_dist/1000 + 0.5 ); 
    if pd0HW > 1.0 
       pd0HW = 1.0; 
    end 
    
    if mbc==7.5 
        if complex==1 
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             %p_r_dist=(1-((110.4*exp(-0.000032*r_dist)-107.3*exp(-0.0014*r_dist)))/100)*0.06; %hanging 
wall CDF where the 0.06 is the probabilty of distributed as a function of x/L 100 m bins 
             p_r_dist=(1-(0.6998*exp(2.75*10^-5*r_dist)-0.6931*exp(-0.001219*r_dist)))*pd0HW; %complex=1 
        else 
            r_dist_max=min(r_dist,3500); %this caps the distribution at the upper limit of the observed data 
            p_r_dist=(1-(0.8298*exp(5.682*10^-5*r_dist_max)-0.8346*exp(-0.001735*r_dist_max)))*pd0HW; 
%complex=0 
        end 
         
    elseif mbc==6.5 
        if complex==1 
            p_r_dist=(1-(0.8858*exp(6.203*10^-6*r_dist)-0.8957*exp(-0.001959*r_dist)))*pd0HW; 
%complex=1 
        else 
             r_dist_max=min(r_dist,3500); 
             p_r_dist=(1-(1.166*exp(-4.699*10^-5*r_dist_max)-1.1730*exp(-0.001539*r_dist_max)))*pd0HW; 
%complex=0  
        end 
 
    elseif mbc==5.5 
             r_dist_max=min(r_dist,120); 
             p_r_dist=(1-(98.45*exp(0.00228*r_dist_max)-98.53*exp(-0.01417*r_dist_max)))*pd0HW; 
%complex=0 
    end 
     
    %distance corresponding to exponential or random displacements 
    if complex==0 
        d_MD_ratio=0.43*exp(-0.4*r_dist/1000); %HW 85th percentile envelope 
        %d_MD_ratio=0.35*exp(-0.091*r_dist/1000); %Youngs et al 
    else 
        d_MD_ratio=0.43*exp(-0.012*r_dist/1000);%complex faulting 
    end 
     
else %wall==0 foot wall 
 
  %prob nonzero for foot wall at 85th percentile 
    pd0FW = exp(-2.4 * r_dist/1000 + 0.4 ); 
    if pd0FW > 1.0 
       pd0FW = 1.0; 
    end 
     
    if mbc==7.5 
        if complex==1 
             %p_r_dist=(1-((84.12*exp(0.00006*r_dist)-83.09*exp(-0.0055*r_dist)))/100)*0.02; %foot wall cdf 
were the 0.02 is the probabilty of distributed as a function of x/L 100 m bins  
             p_r_dist=(1-(0.1959*exp(0.0001091*r_dist)-2.202*10^08*exp(-002554*r_dist)))*pd0FW; 
%complex=1   
        else 
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             r_dist_max=min(r_dist,3500); 
             p_r_dist=(1-(1.445*exp(-7.078*10^-5*r_dist_max)-1.454*exp(-0.0006972*r_dist_max)))*pd0FW;  
%complex=0   
        end 
         
    elseif mbc==6.5 
            r_dist_max=min(r_dist,3500); 
            p_r_dist=(1-(0.9297*exp(2.515*10^-5*r_dist)-0.9233*exp(-0.01828*r_dist)))*pd0FW;  %complex=0 
             
    else 
            p_r_dist=0;  
    end 
     
    %distance corresponding to exponential or random displacements 
        d_MD_ratio=0.68*exp(-0.13*r_dist/1000); %FW 85th percentile envelope 
        %d_MD_ratio=0.16*exp(-0.137*r_dist/1000); %Youngs et al         
end 
 
 
%nu(:,1)=nu(:,1)* d_MD_ratio  
%nu(:,2)=n(:,2)* p_wrz;  
d_off_fault=nu(:,1)*d_MD_ratio %adjusting MD by the d/MD ratio for off-fault location  
d_rate=nu(:,2)*p_r_dist %adjusting the probability for off-fault location  
 
 
%loglog(nu(:,1), nu(:,2)) 
loglog(d_off_fault,d_rate) 
xlabel('Displacement (m)') 
ylabel('Annual Probability of Exceedence') 
axis('tight'); 
set(gca,'FontSize',16,'FontWeight','bold') 
grid on; 
toc 
--------------------------------------------------------------------------------------------------------------------- 
 
function a_gamout = a_gam(xL) 
 
a_gamout = 1.4244*xL + 1.856; 
 
end 
 
%this is the a term in the gamma distribution fit to D/MD data 
 
--------------------------------------------------------------------------------------------------------------------- 
 
 
function b_gamout = b_gam(xL) 
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b_gamout = -0.0832*xL +0.1994; 
 
end 
 
%this is the b term in the gamma distribution fit to the D/MD data 
 
--------------------------------------------------------------------------------------------------------------------- 
 
 
function muout = mu(mag) 
a_MD = -2.5; 
b_MD = 0.415; 
sigma_mu = 0.148; 
muout = log(10^(a_MD + b_MD*mag + sigma_mu)); 
end 
 
%this is the a and b linear regression terms for P(MD|M,r) 
%for all data in Mea22 the equation is  log10(MD)=0.40126*Mw-2.59939  
%for FDHI data only in Mea22 it becomes log10(MD)=0.48150*Mw-2.9305 
 
%for complete rupture in Mea22 it becomes log10(MD)=0.415*Mw-2.50 
%for uncertainty it becomes log10(MD)=0.415*Mw-2.15+(#sigma*0.148) 
 
 

--------------------------------------------------------------------------------------------------------------------- 
 
function truncout = trlnrnd(mu, sigma, n) 
%monte carlo sampling for a truncated lognormal distribution.  zmax is the 
%maximum value where truncation occurs, here it is specified as MD = 15m. 
%n random numbers between 0 and zmax are generated and thrown into the 
%Inverted CDF for a truncated lognormal distribution, then pass them back. 
 
z = unifrnd(0, 1, 1, n); 
 
%truncout = exp(sqrt(2*sigma*sigma)*erfinv(2*z*(logncdf(log(15), mu, sigma)) - 1) + mu); 
 
epsilon_max=5; 
 
cdf_min=logncdf(exp(mu-epsilon_max*sigma),mu,sigma); 
 
cdf_max=logncdf(exp(mu+epsilon_max*sigma),mu,sigma); 
 
truncout=exp(sigma*sqrt(2)*erfinv(2*(z-0.5)*(cdf_max-cdf_min))+mu); 
 
end 
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--------------------------------------------------------------------------------------------------------------------- 
--------------------------------------------------------------------------------------------------------------------- 
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