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ABSTRACT

Earthquake ground motion time series plays a critical role in the performance assessment of the
structures, especially when nonlinear response history analysis for a specific structural system is
required. The number of currently available recording instruments is sparse. Therefore, it is
necessary to have a reliable methodology to construct the ground motion time series at the desired
target un-instrumented sites. Using the Gaussian Process Regression (GPR), we recently presented
an approach for generating ground motion time series at target sites where there are no available
recording sensors. This model is trained based on physics-based simulated earthquake datasets in
northern California and evaluated using the recorded motions during the 2019 M7.1 Ridgecrest
earthquake sequence and 2020 M4.5 South El Monte datasets in Southern California. This GPR
method interpolates the observed Discrete Fourier Transform (DFT) coefficients to construct the
frequency-content of the ground motion at the target location and generate time series at the site.
The optimized hyperparameter of the GPR model depends on the observation density of the
training dataset. Thus, in this study, we tuned the hyperparameter of the GPR model based on
observation density using the 2019 M7.1 Ridgecrest earthquake dataset recorded by the
Community Seismic Network (CSN). In addition, we introduce a methodology to generate random
realizations of ground motions using the trained GPR model at each target site. We utilize this
methodology for the 2019 M7.1 Ridgecrest earthquake to conduct uncertainty quantification of
the estimated motions at short and long periods. The results illustrate that uncertainty of the
generated time series is lower for longer periods than that for shorter periods. In addition, we
carried out the sensitivity analysis of both predictions’ error and uncertainty with respect to a
variety of governing parameters such as density of the observations surrounding the target site and
estimated uncertainty of the local site conditions. It is shown that the observation density plays a
key role in both reducing the prediction error as well as the uncertainty of the estimation.
Moreover, we studied the improvement of the performance of the GPR model in the prediction of
ground motions for 2019 M7.1 Ridgecrest as well as the 2020 M4.5 South El Monte earthquakes
recorded by the California Integrated Seismic Network (CISN) through feeding more observed
motions from CSN sites to the model. The results illustrate that the prediction error decreases,
especially for those target sites located inside the added observed network (CSN) boundary.
However, the prediction uncertainty is not changed considerably, especially at short periods.
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1. Introduction

The ground motion time series play an important role in earthquake engineering, including post-
earthquake performance assessment and analysis of the site-specific structures. The current
number of ground-level recording instruments in California is approximately 2000 over multiple
networks: Southern California Seismic Network, Northern California Seismic Network, and
California Strong Motion Instrumentation Program (Southern California Earthquake Data Center,
2021). Thus, for post-earthquake performance assessment for site-specific structures, the input
ground motion time series must be estimated for locations with no recording instruments.
Currently, “ShakeCast” and “ShakeMap” developed by U.S. Geological Survey (Fraser et al.,
2008; Wald et al., 2008; Lin et al., 2018; Worden et al., 2018) provide Ground Motion Intensity
Measures (GMIM) after an event in a near-real-time manner. These platforms use the neighboring
recorded GMIM to interpolate and estimate the target sites” GMIM (Worden et al., 2018; Baker
and Chen, 2020; Otake et al., 2020). However, for more detailed information about the seismic
response of the structures after an event, nonlinear response history analysis requires the ground
motion time series as input. Therefore a reliable generation of the ground motion time series is
required (Petrone et al. 2021). Furthermore, these generated ground motions must be compatible
with the spatial variation of amplitude, phase, and frequency models over the target region (Zerva
and Zervas 2002; Zerva 2009; Chen and Baker 2019; Jayaram and Baker, 2009; Adanur et al.,
2016; Tian et al., 2016; Zerva et al., 2018; Tamhidi et al., 2022).

In general, there are two methods for generating ground motion time series: 1) physics-based
simulations, which use fine-fault and seismic velocity models that can account for source, path,
and site effects (Boore, 2003; Aagaard et al., 2008a; Aagaard et al., 2008b; Atkinson and
Assatourians, 2015) as well as the topography of the Earth surface (Rodgers et al., 2019). The high
computational costs of such approaches are a concern since they demand precise information on
the site attributes and fault patterns. As a result, these procedures are impractical for assessing
post-earthquake damages rapidly (Loos et al., 2020; Mangalathu and Jeon, 2020), and 2)
Simulations based on the coherency functions using cross-spectral density (CSD) and auto-spectral
density (ASD) functions (Kameda and Morikawa, 1992; Konakli and Der Kiureghian, 2012;
Zentner, 2013; Rodda and Basu, 2018). Simulated ground motions commonly are generated based
on the CSD function, which itself is determined using empirical coherency functions, the
coefficients of which are typically set through data-driven methods (Abrahamson et al., 1991).
Furthermore, finely detailed information regarding the site properties and wave propagation
characteristics might be needed through these methods, which brings the similar issue of being
computationally expensive and time-consuming. Therefore, both methods have their critical
challenges for a rapid post-earthquake structural damage assessment in a real-time manner.



A recently published model on the conditioned simulation of ground motions interpolates the
discrete Fourier transform (DFT) coefficients of the observed motions to construct the ground
motion time series at the target locations (Tamhidi et al., 2021). Tamhidi et al. employed Gaussian
Process Regression (GPR), also known as Kriging (Rasmussen and Williams, 2006), for the
interpolation procedure. The GPR method is shown to be capable of performing conditioned
simulations of ground motions at a set of dense target sites with comparatively cheap
computational costs (Tamhidi et al., 2021). In addition, Tamhidi et al. (2021) illustrated that the
trained GPR method could accurately predict the ground motion content within the frequency
range pertinent to most earthquake engineering problems. The previously established GPR
method’s performance is investigated based on the predicted ground motions constructed with the
posterior mean of DFT coefficients. In addition, it is required to know about the uncertainty of
these predicted ground motions through the trained GPR model.

The focus of the current study is the quantification of the uncertainty and validity of the predicted
motions using the GPR model introduced by Tamhidi et al. (2021). First, we tune the hyper-
parameter of the model for various observation density values. This will enable the users to choose
the hyper-parameter of the models pertinent to their specific problem based on the available
observations. Then, we introduce a methodology to generate random realizations of ground
motions using the trained GPR model and an established inter-frequency correlation model
(Bayless and Abrahamson, 2019). This random realization methodology provides an ensemble of
random samples of motions for the target sites. Thus, the user employs the potential variation of
the ground motions as input to the desired structures for analysis. We utilized this methodology
for the 2019 M7.1 Ridgecrest Earthquake Sequence recorded over the Community Seismic
Network (CSN) and investigated the sensitivity of the accuracy and uncertainty of the estimated
motions to various parameters, such as observation density surrounding each target site and
uncertainty of the estimated local site condition. Moreover, we studied the improvement of the
GPR model’s performance for the prediction of the ground motions recorded at California
Integrated Seismic Network (CISN) stations for both 2019 M7.1 Ridgecrest and 2020 M4.5 South
El Monte earthquake datasets by feeding more observed motions from CSN to the model.

Chapter 2 of this report provides an overview of the theoretical background of the proposed
methodology and Gaussian Process Regression. The model performance is evaluated on several
earthquake ground motion datasets in Chapter 3, and the optimized hyperparameters are introduced
based on the observed dataset’s density in Chapter 4. The production of ground motion realizations
and the uncertainty quantification of these generated motions are discussed in Chapters 5 and 6,
respectively. Eventually, Chapter 7 evaluates the GPR’s performance in the presence of more
observed ground motions from different seismic networks.
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2. Theoretical Background

One can decompose the acceleration time series of the ground motion at the station s, as(t),
constructed with N discrete data points, a,(t;), i = 1, ..., N, at equal time intervals, At, into its
Discrete Fourier Transform (DFT) coefficients A; (Oppenheim and Willsky 2010)

N-1
as(t;) = Z Apel @kt (2.1)
k=0
where
1 o . (2.2)
A = Nz as(t)[cos(wit;) + j - sin (wit))] = Rey + j - Imy,.

=0

In Egs. (2.1) and (2.2), wy, is the k™ natural frequency of the DFT and j = +/—1. Re,, and Jm,
are also the real and imaginary parts of the DFT coefficient at the k™ natural frequency. One can
reconstruct the whole ground motion time series having the real and imaginary parts of the DFT
coefficients at different frequencies, k = 0, ..., N — 1 using Eq. (2.2) and Eq. (2.1).

Tambhidi et al. (2021) simulated the ground motion time series at uninstrumented sites by
estimating the real and imaginary parts of the DFT coefficients (at various frequencies) having
surrounded neighboring stations’ motions observed. They implemented Gaussian Process
Regression (GPR) to predict the Re; and Jm, in Eq. (2.2) using the observed Re’;, and Jm’, at
neighboring stations, s’, at each frequency.

Next, we will review the definition of a Gaussian Process (GP) and how GPR is deployed to
estimate the value of the GP at the unobserved locations using the observed ground motions.

2.1. Gaussian Process Regression

GPR is a supervised machine learning method that was used in an extensive area of research, such
as post-earthquake damage assessment, conditioned simulation of ground motion, and seismic
fragility assessment (Tamhidi et al., 2019, 2020, 2021, 2022; Gentile and Galasso 2019). A GP is
a collection of random variables as a function such that every finite subset of them follows the
multivariate Gaussian distribution (Rasmussen and Williams 2006). The general form of a function
as a GP is shown in Eq. (2.3).
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f(x) ~GP(m(x),k(x,x)) (2.3)

In Eq. (2.3), m(X) is the mean function value at the input location x, and k(x,x") is the covariance
between x and x' locations.

Suppose f is the observed value of the GP and f, are the GP values at the target unobserved
locations. Also, let’s denote the observed locations’ input matrix as X each row of which includes
one observed location’s input feature vector. Similarly, we call X, as the input matrix of the target
(unobserved) locations. The predictive distribution of the f, then is given by (Rasmussen and
Williams 2006)

where
wo=pn+ Kx*xKxx_l(f_”) (2'5)
2.=Kyx — Kx*xKxx_lex* (2.6)

In Eq. (2.4), u. and X, denotes the posterior mean vector and covariance matrix of the target
locations. In addition, u denotes the prior mean vector of the observed locations. The GPR’s output
and smoothness depend on the covariance kernel function, k(r), where r denotes the distance
between the input vectors. k(r) is used to construct the covariance matrix, K, in Egs. (2.5) and
(2.6). Tamhidi et al. (2021) demonstrated that Matérn with v = 1.5 is the optimum covariance
kernel function for the GPR model to simulate the ground motion time series conditioned on
surrounding observed motions. Eqgs. (2.7) and (2.8) illustrate the Matérn (v = 1.5) kernel function
and the distance between two input vectors x and x’.

ky=15(r) = 6 (1 + V3r)exp(—V3r) (2.7)

(2.8)

In Eq. (2.7) oy is the variance that governs how uncertain the GPR’s estimate is for a given input
location. In Eq. (2.8), d is the number of features existing in each input vector, x; stands for the it"
feature of the input vector at location x, and 8 is a positive normalizing factor, also known as the
inverse of length-scale, |, where 8 = 1/1. In this study, one single 8 is used to normalize all
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features of the input vectors (cf. Eq. 2.8). Such a covariance function is called an isotropic
covariance function (Rasmussen and Williams 2006).

2.2. Conditioned Simulation of Ground Motion

It is required to specify the input vector of each site to be used by the GPR model as the first step
of conditioned ground motion simulation. Tamhidi et al. (2021) demonstrated that for the regions
with a considerable variation of site condition, a four-element input vector of x =
{x1, %2, x3,l0g(Vs, )} is adequately informative about the features of the sites to estimate the
ground motions. Vg, stands for the average shear wave velocity in the uppermost 30 m, and x;

through x5 are the Cartesian coordinates of the site on the 3D surface of the Earth.

The GPR model has parameters including distance normalizing factor, 8, the GP prior mean, u
(cf. Eg. 2.5), and variance oy (cf. Eq. 2.7) to be optimized. We have implemented the Maximum a
Posteriori Estimates (MAPESs) using maximizing the penalized log-likelihood of the observations
to optimize the parameters of the GPR model. Denoting the parameters as y = (6, 4, o¢), Eq. (2.9)
illustrates the penalized log-likelihood of the observations (either Re, or 7m, at each k'
frequency).

QW) = —;(F ~W K ' (f =) = jloglK | = Jlog2m —nd ps0).  (29)

In Eqg. (2.9), f denotes the GP observed values, T stands for the transpose operator, n is the number
of observed sites and p;(0) is a non-negative penalty function for normalizing factor 6. There are
several established penalty functions such as the Least Absolute Shrinkage and Selection Operator
(LASSO) (Tibshirani 1996), Smoothly Clipped Absolute Deviation (SCAD) (Fan and Li 2001),
and L2 penalty function. In this study, we used the L2 penalty function. The L2 penalty function
in Eq. (2.9) is defined as

pa(0) = 162 (2.10)

The GPR model is completely defined once the optimum parameters, 7, having penalized log-
likelihood function (cf. Eq. 2.9) maximized.

Tamhidi et al. (2021) demonstrated how one could find the optimum regularization factor, 2,
through the 1906 San Francisco earthquake physics-based simulated ground motions (Aagaard et
al., 2008Db) using the SCAD penalty function for a fixed observation density value. They illustrated
how to use Normalized Root Mean Square Error (NRMSE) of the response spectra between the
estimated and exact ground motion as a criterion to find out the best 2 implementing a five-fold
Cross-Validation (CV) procedure. Tamhidi et al. (2021) state that a smaller number of observations
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within a region (smaller density of observed motions) leads to a higher required regularization
factor, which is consistent with Li and Sudjianto (2005). The fine-tuning of the hyper-parameter,
A, is discussed in more detail in Chapter 4.
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3. Model Evaluation

We discussed that the GPR model has parameters y = (6, u,0r) dependent on the chosen
regularization factor (hyperparameter) of the model, 2. One common way to find out the optimum
hyper-parameter of the models is the Cross-Validation (CV) method (Shao 1993). Tamhidi et al.
(2021) implemented the physics-based simulated ground motions for the 1906 M7.9 San Francisco
earthquake (Aagaard et al., 2008b) to show how the A could be optimized. They conducted a five-
fold CV procedure to find out A as the best regularization factor over the training set, which was a
randomly chosen subset of the simulated ground motions. Tamhidi et al (2021) found that 1 = 0.7
is the optimum regularization factor using the SCAD penalty function and Matérn (v = 1.5)
covariance function for the observation density corresponding to the training set used for the
optimization procedure. It is worth noting that the derived A = 0.7 was obtained for both horizontal
component directions, Fault Normal (FN) and Fault Parallel (FP). Interested readers are referred
to Tamhidi et al. (2021) to have more detail on the training procedure and hyperparameter
optimization of the GPR model.

Next, we aim to illustrate the model’s performance in predicting the ground motions using the
physics-based simulated motions.

3.1. The 1906 M7.9 San Francisco Simulated Motions

The 1906 M7.9 San Francisco physics-based simulated ground motions are generated at 40,700
sites on a uniform 1.5 km x 1.5 km grid. Tamhidi et al. (2021) chose two regions called Palo Alto
and South Napa to train as well as test the GPR model. These regions are shown in Figure 3.1. The
Palo Alto and South Napa regions have 104 and 111 sites, respectively. Around 80% of them are
randomly chosen as training (observed) set, and the remaining 20% are set aside as test sites to
predict their ground motions. The training set was already used to find out the optimum A = 0.7
for the GPR model using the SCAD penalty function and Matérn with v = 1.5. Figure 3.2 illustrates
the distribution of the chosen training and test sites by Tamhidi et al. (2021).

The accuracy criterion used by Tambhidi et al. (2021) is the normalized root mean square error

(NRMSE) between estimated (conditioned simulated using GPR) and exact (physics-based)
motions’ 5%-damped pseudo-spectral acceleration (PSA). The NRMSE is given by
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where, Nperioq €quals the number of periods included in the response spectra. The GPR model

described in Section 2 using the 2 = 0.7 is implemented to predict the ground motion time series
at each test site for the Palo Alto and South Napa regions (Figure 3.2) using the corresponding
observed sites. The following steps are taken to estimate the ground motion time series at each test
site:

1. Given the observed ground motions (training set), the model parameters, 7= (8, i, ay) are
obtained at each frequency for the real and imaginary parts of the DFT coefficients using
the corresponding A.

2. The posterior means (Equation 2.5) for the DFT coefficients at the test sites are obtained
for each frequency using the values of y from step 1.

3. The entire ground motion time series is constructed using Egs. (2.1) and (2.2).

Figure 3.3 demonstrates the distribution of the NRMSE for the RotD50 spectrum between the
estimated and exact ground motions at each test site location for both Palo Alto and South Napa
study regions. In Figure 3.3, there are five chosen test sites within each of the Palo Alto and South
Napa study regions to illustrate their estimated motions. Figures 3.4 and 3.5 demonstrate the
predicted motions’ RotD50 spectra, velocity time series, and Fourier Amplitude Spectrum (FAS)
and the corresponding exact ones for the five chosen test sites within Palo Alto and South Napa
study regions, respectively.
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Figure 3.3. The distribution of the test set’s NRMSE for the RotD50 spectrum at a) Palo Alto and b)
South Napa study regions in 1906 M7.9 San Francisco Physics based sumulated earthquake
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In addition, Table 3.1 summarizes the average test set’s NRMSE for response spectra along FN
and FP directions and the RotD50 spectrum for both study regions.

Table 3.1. 1906 M7.9 San Francisco test set’s NRMSE for response spectra along FN and FP directions
as well as the RotD50 spectrum (Tamhidi et al., 2021)

FN FP RotD50
Study Region Average Standard Average Standard Average Standard
Deviation Deviation Deviation
Palo Alto 0.34 0.29 0.38 0.38 0.31 0.36
South Napa 0.23 0.06 0.26 0.1 0.19 0.05

It is observable from Figures 3.4 and 3.5 that the trained GPR was able to estimate the ground
motion time series decently and accurately compared to the exact ones at most of the test sites.
There are four sites in total that their prediction was not accurate, and those are constrained to the
boundaries of the observations’ network where there is a less uniform distribution of the observed
sites. It is also shown that the GPR model can predict the long period pulses due to the directivity
effect reasonably well (Figure 3.4). By comparing the results of Table 3.1, it is demonstrated that
the prediction accuracy of the GPR model for the regions far away from the fault might be higher
than those very close to the fault as the GPR employs an isotropic covariance function which
allocates a uniform correlation to the neighboring observations around the target site. The
prediction accuracy of the GPR could be improved by deploying an anisotropic covariance model
for the regions closer to the fault (Tamhidi et al., 2021; Rasmussen and Williams 2006).

3.2. M7.0 Hayward Fault Scenario Earthquake Simulated Motions

Tamhidi et al. (2021) tested the performance of the GPR model on another physics-based simulated
dataset that was not present during the training procedure. They used M7.0 Hayward fault scenario
earthquake simulated ground motions (Rodgers et al., 2019), considering the 3D topographic
features of the Earth’s surface. These motions are simulated at 2301 stations on a uniform 2 km x
2km grid. These motions are generated using Vs .= 500 m/s; therefore, they chose 326 sites the
Vs, of which are equal or greater than 500 m/s based on the USGS 2018 model (USGS, 2018).
The Vg, of these selected 326 sites are between 500 m/s and 520 m/s. About 80% of these 326
stations are randomly chosen as training (observed) set, and the rest 20% are considered as the test
set. Figure 3.6 demonstrates the distribution of the training set as well as NRMSE between the
predicted (conditioned simulated) and exact (physics-based simulated) motions’ 5%-damped
linear RotD50 response spectra at the test set locations. In Figure 3.6, there are five chosen test
sites that we illustrated the predicted as well as exact motions’ velocity time series and FAS along
FN and the RotD50 spectra in Figure 3.7.
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Figure 3.7 depicts the prediction results for the five test sites selected in Figure 3.6. As shown in
Figure 3.7, the RotD50 spectra of the predicted motions are quite close to those of the physics-
based simulated motions. Furthermore, as shown in Figures 3.7a through Figure 3.7c, the long
period pulses of the ground motion (or Peak Ground Velocity, PGV) are reasonably accurately
estimated. Moreover, Figure 3.6 depicts that most of the test sites’ ground motions are correctly
predicted, while a few sites’ predictions were a little more erroneous, indicating that most of them
are limited to the network’s edge, where there is not a uniform observation surrounding them. The
average NRMSE among all stations for predicted motions’ response spectra along FN, FP, and
RotD50 is 0.28, 0.31, and 0.25, respectively. The test results from both 1906 M7.9 San Francisco
and M7.0 Hayward fault earthquakes demonstrated the applicability of the GPR model to simulate
ground motions. However, this training was done just for one specific observation density, and
thus, there is a requirement to fine-tune the hyperparameter of the model, A, for various observation
densities as Li and Sudjianto (2005) states the dependency of the penalty function regularization
factor on the density of the observation. In the following chapter, we used the ground motions
recorded by the Community Seismic Network (CSN) during the 2019 M7.1 Ridgecrest earthquake
to fine-tune the regularization factor for various observation densities.

21



RotD50 Fault-Normal Velocity (cm/s) Fault-Normal FAS

1 —— Exact —— Exact — Exact
==+ Estimated 40 Estimated ==+ Estimated

velocity (cm/s)
o
FAS (g.s)

-40

10 20 30 40 50 ; ) 1
time (s) frequency (Hz)

N
-l

velocity (cm/s)
o

-40

-60

-80 0.01 -—
10 0 10 20 30 40 50

1
period (s) time (s)

0.1

velocity (cm/s)
FAS (g.s)

0.01
0.01
Vsso = 515(7)
NRMSE = 0.2 -60

i 10 0 10 20 30 40 50
period (s) time (s)

FAS (g.s)

velocity (cm/s)
%
o o

[}
B
o

|
(=]
o

0 10 20 30 40 50
time (s)

=
o

PSA (g)

v
velocity (cm/s)
o
FAS (g.s)

10 0 10 20 30 40 50 0.1 1
period (s) time (s) frequency (Hz)

Figure 3.7. The RotD50, velocity time series, and FAS of the predicted as well as the exact motions
along Fault-Normal direction for the chosen test sites: a) No. 1, b) No. 2, ¢) No. 3, d) No. 4, and e) No.
5 within M7.0 Hayward fault scenario earthquake simulated motion dataset

22



4. Optimum Regularization Factor Based on Density of
Observations

The derived optimum parameters of the GPR, ¥ = (0, 4, dr), depend on the assumed penalty
function and the regularization factor (cf. Eqg. 2.9). In other words, the regularization factor, 4, is
the hyperparameter of the model that controls how observations lead to the optimum . As Li and
Sudjianto (2005) stated, the sparsity of the observations leads to a higher variance in the vicinity
of the optimum solution in the log-likelihood function of the observations, which needs an
introduced bias (penalty) to reduce the variance. Therefore, it is expected to need a higher penalty
(or A) for the log-likelihood function of the observations when there is a smaller number of
observed sites within a region (Tamhidi et al., 2021). As a result, there would be different optimum
regularization factor, A, for various observation densities. Therefore, it is required to tune the 1 as
a function of observation density.

We used CSN stations in Los Angeles (Clayton et al. 2020) to investigate the effect of observation

density on 4. We used the recorded earthquake ground motions during the 2019 M7.1 Ridgecrest
earthquake for that purpose.

4.1. M7.1 Ridgecrest Earthquake

The 2019 M7.1 Ridgecrest earthquake happened on July 6%, 2019, in Searles Valley, 17.9 km
Northeast of Ridgecrest, California. We implemented the 252 ground-level recording sites motions
of the CSN in this study. Table 4.1 summarizes the 2019 M7.1 Ridgecrest earthquake features.

Table 4.1. The 2019 M7.1 Ridgecrest earthquake features (USGS, 2019) recorded by CSN

Date UTCtime My Epicenter Depth  No. of stations Network Area (km?)
July 6", 2019 03:19:53 7.1 Searls Valley 8.0 km 252 464

The observation density of these recorded motions is calculated by dividing the number of
observed ground motions over the area of the enclosing network. Figure 4.1 shows the 252 CSN
sites that recorded the M7.1 Ridgecrest earthquake and the bounding region of the network with
an area of 464 km?. This means that the observation density within Los Angeles is approximately
0.54 sites/ km?.

The L2 penalty function was utilized for the penalized log-likelihood function (cf. Eqg. 2.9). We
created several datasets with various observation density by randomly selecting 252 CSN sites to

evaluate the optimum A for various observation densities. We made datasets with 252, 201, 151,
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100, 50, and 25 recorded ground motions, respectively. The distribution of the randomly chosen

sites for each dataset is shown in Figure 4.2. It is worth noting that the site condition
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recording stations is predicted using a proxy-based model, as explained in Ahdi et al. (2020).
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Figure 4.1. Distribution of the 252 CSN-LAUSD sites that recorded 2019 M7.1 Ridgecrest
earthquake

The selection criterion for finding A for each dataset is the normalized root mean square error
(NRMSE) between the exact (recorded) and the conditioned simulated (estimated) ground

motions’ 5%-damped RotD50 (Boore, 2010) response spectra.

It is worth noting that the usable period bandwidth of the predicted motions is the mutual usable
bandwidth (Ancheta et al., 2014) among all observed motions, which is the reliable period range
after the noise removal of the observed motions.

In order to find the A for each dataset shown in Figure 4.2, we implemented Leave One Out (LOO)
cross-validation method (Vehtari et al., 2017). The following steps are taken for each A, to be
evaluated for each dataset (Nsites = number of recording sites):

1. For each individual site, s, within the dataset; s=1, ..., Nsites
1.1. Obtain the optimum parameters y for the observed motions, which are all the recorded
ground motions except the motion recorded at site s, using A;.s; and maximizing Q(y) in

Eg. (2.9).
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1.2. Estimate the ground motion time series at the station s using posterior mean (Eq. 2.5) for
both real and imaginary parts of the DFT coefficients, employing 7 derived in step 1.1.
1.3. Obtain the RotD50 spectrum of the estimated and exact (recorded) ground motions at
station s and calculate the NRMSE between them within the usable bandwidth. Store this
NRMSE as Errors.
2. Take the average of Error; among all sites within the dataset (s = 1, ..., Nsites), i.€., ETT074,4
and store it as the corresponding error to the A;.;.
Eventually, we chose the A with the lowest Errorg,, as the A for the corresponding dataset.

Table 4.1 illustrates the obtained A1 for each of the datasets in Figure 4.2.
a) ‘ b) , ‘ ‘ , c)

N N N
7 || * Recording Stations A z | * Recording Stations k .| * Recording Stations A
o L & | v—I = i —1E
= endol q 3 e Giensle
= o [ <
©“ o L]
: . L4
Z 4 Z
o 45 : e e " : ERR e o
3 & - . F| o s 3 =
- " . -
. s .
Zz Aimain .". . z A ST S 2 &
i 5 = - g Tk P > -
B = s ke = ot & 2
Z - 1 z i z
% " 7 aii? 5
=S . ES &
o
7. 7N 7 i z o 1
in g B ] 5 ey o
x e N i .
) s e b en o .
o . " . o
02 |4 B 5
= EAESES 8 z = EACRETE Y
& Lol o F 24 Canniato s e S il
fae) T T T T T el T T T T T [ae] T T — T T
2 118.35° W 118.3° W 118.25°W 1182°W 118.15°W ™ 118.35° W 118.3° W 118.25° W 118.2°W 118.15°W 7 118.35° W 1183° W 118.25°W 118.2°W 118.15° W
d) e) f)
L ‘ A. L N — \ ‘ .. . \ — : .
= | * Recording Stations A | * Recording Stations A = * Recording Stations }\
o L & ] L
=] ST S < (S, Faeso &~
% g < £
I i by
z Z z
o, T o 2
=+ t <t =1
A woa e ES s
0

Zz 4 Z
re reg Angels o
s S o
= 0 p: 3

Z z
E . 5 =1

-
z A z z
i e & %
o | N et - weemaat )
A P a
2 5w 0o 5% ¢ 3

z 405 $ S z =lE 2 % Z|l0 2 4 6 8
3] =———— Km g, === Km o | r——p— Km
< T T I —— T I T T — . - N - - -
e 11835° W 11837 W 11825 W 1182°W 118.15°W ™ 11835 W (1837 W 1825 W 1182°W 118.15°W 7 118.35°W 118.3°W 118.25°W 118.2° W 118.15° W

Figure 4.2. Distribution of the randomly chosen datasets of CSN recorded M7.1 Ridgecrest earthquake
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Table 4.2. The 4 obtained for different observation density and the Error,,4 corresponding to that

No. of Observation

Density (station/km?) A

Average RotD50 NRMSE

(Errorayg)

251

0.54

0.05

0.27

200

0.43

0.1

0.28

150

0.32

0.1

0.27

99

0.21

0.1

0.31

49

0.10

0.2

0.30

24

0.05

04

0.40

We have employed the corresponding A for each of the datasets shown in Figure 4.2 to estimate
the ground motion time series at each station of that dataset, considering all the rest of the stations’
motions as observation (i.e., LOO analysis). Figure 4.3 demonstrates the distribution of the
NRMSE between the exact (recorded) and estimated motions’ RotD50 spectrum.
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As discussed above, Table 4.2 demonstrates that the required A to have a reliable ground motion
estimation increased by decreasing the number of observations within a region (lower observation
density). Figure 4.3 indicates that the estimated ground motions at each station using the rest
stations’ motions as observation are reliably accurate for most of the stations in each dataset.
However, Figure 4.3 shows that the number of stations with higher RotD50 NRMSE (yellow,
orange, and red stations) increases by decreasing the number of observed sites. This is also
illustrated in Table 4.2 that the average RotD50 NRMSE among all stations increases for having
a lower number of observations.

Table 4.3 illustrates the average and standard deviation of the Errorg,, between the exact and
recorded motions’ response spectra along East-West (EW), North-South (NS) directions and
RotD50 for each dataset shown in Figure 4.3.

Table 4.3 . Average and Standard Deviation of NRMSE between recorded and estimated motions’
response spectra for each dataset shown in Figure 4.3

No. of h AT S T
- andar andar andar
Sites Average Deviation Average Deviation Average Deviation
252 0.05 0.31 0.15 0.30 0.14 0.27 0.14
201 0.1 0.33 0.21 0.32 0.18 0.28 0.18
151 0.1 0.32 0.15 0.31 0.16 0.27 0.14
100 0.1 0.36 0.18 0.35 0.18 0.31 0.18
50 0.2 0.34 0.14 0.34 0.15 0.30 0.14
25 0.4 0.44 0.19 0.46 0.23 0.40 0.16

Table 4.3 shows that, in general, the average response spectra NRMSE for both EW and NS
directions is increased by having a lower number of observations, which is expected as the higher
number of observations provides more input information about the spatial variation of the
amplitude within a region.

In summary, it is concluded that the optimized regularization factor, A, should be chosen based on
the observation density within the target network. It is observed that the required A and
subsequently penalty function value, p;(0), in Eq. (2.9) is increased for having a lower density of
observations. In addition, the expected average error of prediction for the smaller number of
observations is higher.
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5. Random Realization of Generated Ground Motions

The ground motions predicted in Chapter 3 were constructed using the mean estimated DFT
coefficients’ real and imaginary parts, Re;, and Jm,, at each k™ frequency, k =0, ..., N-1. One
can have a posterior mean vector, and the posterior covariance matrix of the real and imaginary
parts at each frequency for all target sites having the GPR estimated values (cf. Egs. 2.5 and 2.6).
At each prediction step in this study, we create the ground motion time series at only one target
site. As a result, Egs. (2.5) and (2.6) provide posterior mean and posterior standard deviation for
the real and imaginary parts at each frequency (cf. Egs. 5.1 and 5.2).

5.1. Ground Motion Random Sample Generation Methodology

Suppose we aim to estimate the uncertainty of the ground motion constructed using the posterior
mean DFT coefficients’ real and imaginary parts at site s. Using the derived 7 = (8, fi, dy) at each
k" frequency, the posterior mean and standard deviation are given by

te= R+ Kx*xKxx_l(f — @), and (5.1)
0, = Kx*x* - Kx*xKxx_lex*- (5-2)

In Egs. (5.1) and (5.2), u, and o, are the posterior mean and standard deviation of estimated Re,
(or Im;) and f is a vector of the observed Re'j, (or 7m';) at the neighboring stations, s. The fi is
the optimized prior mean of Re, (or Jm,). We used the correlation between the real and
imaginary parts of the observed ground motions DFT coefficients at the k™ frequency to estimate
the correlation between the real and imaginary parts at the target site. Then, the 2x2 covariance
matrix for pair of (Rey, Jm,) can be established using the estimated correlation matrix and
standard deviation (Eq. 5.2). It is possible to generate random samples of 2x1 (Rey, Im,,) vectors
having the 2x1 mean vector of Re, and Jm, provided by Eqg. (5.1) and constructed 2x2
covariance matrix. These generated random samples of 2x1 (Rey, Jm,) vectors can then be
converted to amplitude samples, |A; | using Eq. (2.2). The logarithmic mean and standard deviation
of generated random samples of |A;| are then calculated. We implemented the inter-frequency
correlation model developed by Bayless and Abrahamson (2019) to estimate the correlation
between log(]Ax[) and log(]4;[) at the k™ and j™ frequencies, where k # j. Eventually, a NxN
covariance matrix of log(|Ax|) (k=0, ..., N-1) using the estimated standard deviation and obtained
correlation is constructed. The combination of NXxN covariance matrix and Nx1 estimated mean
vector of log(|A,|) enabled us to generate Nx1 random vectors of log(|A,|), which can be
converted to random samples of Nx1 Fourier Amplitude Spectra (FAS) vectors. The generated
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samples of FAS are then combined with the Phase spectrum constructed using the posterior mean
of Re;, and Jm,, at each frequency to generate the ground motion time series realizations at the
target site.

5.2.  Ground Motion Realizations for M7.0 Hayward Fault Scenario Earthquake

We conducted the described generation of ground motion realizations method on the M7.0
Hayward fault scenario earthquake generated by Rodgers et al. (2019). In addition, we have used
the test set by Tamhidi et al. (2021) to evaluate the trained GPR model for the M7.0 Hayward fault
scenario earthquake dataset. Figure 5.1 illustrates three chosen test sites for each of which we
generated 100 ground motion realizations.
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Figure 5.1. Distribution of the training and the chosen test sites for random ground motion realization
purpose for the M7.0 Hayward fault scenario earthquake simulated motions.

Figure 5.2a illustrates the 5%-damped PSA along the FN direction for the exact (physics-based
simulated), mean estimated, and one hundred ground motion realizations for the target site 1.
Figure 5.2.b demonstrates the exact, mean estimated, and ground motion realizations’ FAS along
FN direction at the same target site. The 68 percent confidence interval (mean + standard
deviation) of PSA and FAS along FN direction at the target site 1 are shown in Figures 5.2c and
5.2d, respectively. Figures 5.2c and 5.2d depict that the uncertainty associated with estimated
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motions is higher at short periods (higher frequencies) rather than at longer periods. This
phenomenon could be due to having observed motions at distances that is more informative to
generate long period (longer wavelengths) content of the motions. On the other hand, the number
of observed motions with the current observation density (2 km separation distance) is insufficient
to estimate the higher frequency content of the target sites deterministically. Figure 5.3. illustrates
five generated ground motion realizations’ velocity time series along FN direction for the target
site 1. In general, the longer period content of the motions is estimated more confident and more
accurate.

Figure 5.4 through Figure 5.7 illustrate the one hundred random ground motion realizations for
target sites 2 and 3, respectively. Figure 5.4 through Figure 5.6 demonstrate that the variation of
the estimated content at the shorter periods (short wavelengths) is higher with respect to those at
longer periods.
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Figure 5.2. a) 5%-damped pseudo spectral acceleration (PSA) samples, b) Fourier Amplitude
Spectrum (FAS) samples, c) 68% confidence interval of PSA, and d) 68% confidence interval of
FAS along Fault-Normal direction at test site 1 within the M7.0 Hayward Fault scenario earthquake
simulated motions
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Figure 5.6. a) 5%-damped pseudo spectral acceleration (PSA) samples, b) Fourier Amplitude

Spectrum (FAS) samples, c) 68% confidence interval of PSA, and d) 68% confidence interval of
FAS along Fault-Normal direction at test site 3 within the M7.0 Hayward Fault scenario earthquake

simulated motions
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Figure 5.7. Random generated samples of ground velocity time series along Fault-Normal direction
at test site 3 within the M7.0 Hayward Fault scenario earthquake simulated motions

5.3.

Ground Motion Realizations for M7.1 Ridgecrest Earthquake

It is required to evaluate the established ground motion realization method on another real recorded
ground motion dataset. Therefore, we conducted the random generation of ground motion method
described in Section 5.1 to 2019 M7.1 Ridgecrest earthquake ground motions recorded by
Community Seismic Network (CSN) in Southern California, Los Angeles (Clayton et al. 2020;
Kohler et al. 2020). The ground motion realization generation method is conducted on the two test
sites within CSN ground-level recording stations (Figure 5.8) using 149 observed sites.

The two test sites were chosen to generate the mean estimated ground motion and 100 ground
motion realizations. Figure 5.8. illustrates the distribution of the observed sites and two selected

test sites.
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Figure 5.8. Distribution of the training and test set for the CSN stations recorded 2019 M7.1
Ridgecrest earthquake for random generation of ground motion realizations

It is worth noting that the optimized regularization factor, A, specified in Table 4.1 is used to
construct the mean estimated ground motion as well as ground motion realizations at the location
of two test sites shown in Figure 5.8.

Figure 5.9 illustrates the 5%-damped PSA and FAS along EW direction for the exact (recorded),
mean estimated, and one hundred samples of ground motion realizations for the target site 1 within
the usable frequency bandwidth. It is observable in Figure 5.9 that estimated motions have more
variation (higher uncertainty) at shorter period content (mostly shorter than 1s). In addition, Figure
5.9 illustrates that the recorded motion’s PSA and FAS are bounded within the 68% confidence
interval of the predicted motions at test site 1 shown in Figure 5.8. Figure 5.10 depict the recorded
and mean estimated ground velocity along EW direction and five generated ground motion
realizations for the target site 1. Figure 5.10 indicates that the mean estimated ground velocity is
appropriately close to the recorded one. In addition, the long period content of the motions for the
five shown velocity realizations is almost similar. In contrast, the difference can be seen within
the motions’ higher frequency (shorter wavelengths) content.
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Figure 5.11 illustrates the 5%-damped PSA and FAS along EW direction for the recorded and
estimated motions for the target site 2 in Figure 5.8. The similar trend for observing more
uncertainty for the higher frequencies is evidenced. It is also shown that the 68% confidence
interval of the estimated motions encompasses the recorded motion’s PSA and FAS. Figure 5.12
illustrates the mean estimated, recorded, and the five randomly generated ground motion velocity
time series at the target site 2. It is shown that the mean estimated ground motion is appropriately
close to the recorded one. In addition, the mutual long period waves among all the random
realizations as well as the mean estimated ground motions is seen.
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Figure 5.11. a) 5%-damped pseudo spectral acceleration (PSA) samples, b) Fourier Amplitude
Spectrum (FAS) samples, c) 68% confidence interval of PSA, and d) 68% confidence interval of
FAS along East-West direction at test site 2 within the M7.1 Ridgecrest earthquake ground motions
dataset recorded by CSN
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6. Uncertainty Quantification and Sensitivity Analysis of Proposed
GPR Method

In this Chapter, we aim to investigate the parameters affecting the GPR output and its uncertainty.
The simulator (in this study, GPR), which approximates the complex physical systems
(propagation of the waves through geological layers and ground surface movement), has their
uncertainty in its outputs (Daub et al., 2021; Sobol, 2001). We implemented the established GPR
model over the ground motions recorded by CSN for the 2019 M7.1 Ridgecrest earthquake in Los
Angeles to quantify this uncertainty. We utilized the GPR model to estimate the ground motions
at target sites and quantify the uncertainty of the estimated motions through the generation of
ground motion realizations (see Chapter 5).

6.1. M?7.1 Ridgecrest Earthquake Recorded by CSN

The various number of sites chosen out of the CSN sites that recorded the M7.1 Ridgecrest
earthquake is shown in Figure 4.2. We chose the dataset with 252 sites to quantify the uncertainty
of the estimated motions and conduct the sensitivity analysis on them. The LOO estimation of the
ground motions at each site (as a target site) is conducted using the 1 equals 0.05 (cf. Table 4.1).
We generated the motions constructed with the posterior mean DFT coefficients and one hundred
ground motion realizations at each target site. Figure 6.1 illustrates the distribution of the RotD50
NRMSE between exact and mean constructed motions for 252 sites within CSN recorded M7.1
Ridgecrest earthquake. There are three chosen sites whose estimated and recorded ground motions’
EW PSA are shown in Figure 6.2.

6.1.1. Uncertainty Quantification of Conditioned Simulated Motions

The one hundred generated ground motion realizations provide information regarding the
uncertainty of the estimated motion at each period, as is shown in Figure 6.2. In Figure 6.2, the
variation of the random samples’ PSA is representative of the uncertainty of the estimated motions
at each period. Therefore, we computed the logarithmic standard deviation of the PSA at two
periods T = 0.4 (s) and T = 2.0 (s), as two representatives for short and long period content of the
motions, respectively. Figure 6.3 illustrates the distribution of the logarithmic standard deviation
of PSA along the EW direction at periods T=0.4 (s) and T = 2.0 (s).
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Figure 6.2. The 5% linear response spectrum of the mean estimated motion as well as 100 random
ground motion realizations along East-West direction for test sites a) 1, b) 2, and c¢) 3 for 2019 M7.1
Ridgecrest earthquake dataset

Similarly, Figure 6.4 demonstrates the logarithmic standard deviation of PSA along NS directions
for each site.
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Figures 6.3b and 6.4b illustrate that the southern region of the CSN has smaller uncertainty
(logarithmic standard deviation) for long period estimation (T = 2.0 s) along both EW and NS
directions. However, the uncertainty at shorter period estimations (at T = 0.4 s) does not show
much variation within CSN stations; in other words, almost similar uncertainty is obtained for all
sites for the short period estimation. It is also observable that the stations located within the Los
Angeles basin (shown in Figure 6.3 and Figure 6.4) demonstrate lower uncertainty of the long
period estimation compared to those located outside of the basin. This phenomenon is due to the
more coherent motions at longer periods for those stations located on top of the Los Angeles basin
(Kohler et al., 2020).

The uncertainty variation for the long period content of the motions within CSN (Figure 6.3 and
Figure 6.4) is due to two reasons. First, the density of the observations around each target point is
different. As a result, the target sites with more nearby observations have more input data to
estimate the long period waves of the motion (southern region of the network in Figure 6.3 and
Figure 6.4). In contrast, those whose surrounding observations are far from them might show
higher uncertainty of the predicted motions. This variation of the uncertainty due to the observation
density is investigated in more detail in Section 6.1.2. Second, the southern region of the CSN
includes softer site conditions in terms of I, , Z10 (depth to the V; = 1 km/s) and Z2s (depth to the

V. = 2.5 km/s) due to the Los Angeles basin. Thus, it amplifies the long period content of the
motion and makes the long period waves more coherent within southern region of the CSN (LA
basin) as is mentioned in Filippitzis et al. (2021). Figure 6.5 illustrates the distribution of the
estimated Z10and Z>5 using the SCEC CVM-S4 model (Kohler et al., 2003; Nweke et al., 2018).
It is recognizable from Figure 6.5 that most of the sites with smaller long period uncertainty (Figure
6.3b and Figure 6.4b) are on top of Los Angeles basin.

Furthermore, we investigated whether the recorded ground motion’s PSA at each target site falls
within the mean + one standard deviation (68% confidence interval) of the estimated motion’s
response spectrum. Thus, we have generated four maps that indicate whether the estimated
motion’s 68% confidence interval (CI) (mean + one standard deviation) encompasses the recorded
motion’s PSA for two periods, T =0.4 (s) and T = 2.0 (s). Figure 6.6 illustrates the location of the
recorded motion’s PSA relative to the 68% CI of the estimated motion’s PSA for each target station
for the EW direction. In Figure 6.6, the recorded motion’s PSA is located within 68% CI for the
78% and 69% of the stationsat T = 0.4 (s) and T = 2.0 (s), respectively. Similarly, Figure 6.7 shows
the location of the recorded motion’s response spectrum with respect to the 68% CI for the NS
direction. In Figure 6.7, the recorded motion’s PSA falls within the 68% CI cloud for the 74% and
77% of the stations at T = 0.4 (s) and T = 2.0 (s), respectively.
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Figure 6.6. Location of the recorded motion’s PSA with respect to the 68% Confidence Interval of
predicted motion ata) T=0.4 (s) and b) T = 2.0 (s) along East-West direction for 2019 M7.1
Ridgecrest earthquake dataset
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predicted motionata) T =0.4 (s) and b) T = 2.0 (s) along North-South direction for 2019 M7.1
Ridgecrest earthquake dataset

6.1.2. Sensitivity Analysis of Conditioned Simulated Motions

We intend to study the effect of various governing characteristics, such as observation density,
variation of estimated site conditions’ uncertainty, and variation in the surrounding topography,
on the precision and uncertainty of the estimated motions. It is essential to have an understanding
of the controlling parameters that govern the GPR model output (Kwon and Elnashai 2006).

To start, we evaluated the effect of observation density surrounding each target point on the
response spectrum NRMSE. We selected the four nearest observed sites to each target station and
computed their average separation distance (using the 4D space stated in Section 2.2). This
distance is used to represent the observation density surrounding each target site. In other words,
the lower average distance from the four closest sites corresponds to a higher observation density.
Figure 6.8 illustrates the scatter plot of the response spectrum NRMSE (within the usable
bandwidth) along EW, NS, and the RotD50 versus the average separation distance from the four
closest observed sites. The separation distance (x-axis) in Figure 6.8 is unitless as the distance
within the 4D space of the GPR model is calculated between normalized vectors with zero mean
and unit standard deviation and, thus is unitless.
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Figure 6.8. Scatter plot of the PSA normalized root mean square error along a) Eas-West and b) North-
South, and c¢) RotD50 spectrum with respect to the average separation distance from four closest
observations for 2019 M7.1 Ridgecrest earthquake dataset

Figure 6.8 shows that the estimation error increases by increasing the average distance from the
closest observations. In other words, there is a direct relationship between the prediction error and
the density of the observations surrounding the target site. Figure 6.9 shows the scatter plot of PSA
relative error along both EW and NS directions at two periods, T = 0.4 (s) and T = 2.0 (s),
concerning the average separation distance from the closest neighbors. The relative error between
the estimated and recorded motions’ response spectra at the period T, Errory, is calculated by

PSA; — PSA;
Errory = T (6.1)
where PSAr and PSA7 are the predicted motion and recorded motion’s response spectrum at period
T. It is observable from Figure 6.9 that the effect of the increase in observation density on longer
period’s error is more than that on short period’s error. The latter is interpreted based on the slope
of the fitted first-order line to these scatter plots as shown in Figure 6.9. Moreover, it is observable
by comparing part a with part d, part b with part e, and part ¢ with part f in Figure 6.9. Therefore,
it is recognized that the observation density could improve the ground motion time series
prediction, and this improvement is more significant for longer periods based on the current
observation density.

Furthermore, we investigated the effect of the observation density on the prediction uncertainty at

two periods, T=0.4 (s) and T = 2.0 (s), along EW and NS directions within Figures 6.10 and 6.11,
respectively.
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Figures 6.10b and 6.11b depict that estimation uncertainty increases by decreasing the observation
density (increasing average separation distance from four closest observations) at longer periods,
T = 2.0 s. One can recognize that the uncertainty at the longer periods is more sensitive to the
separation distance from observations compared to the shorter period one by comparing Figures
6.10a with 6.10b. In other words, the uncertainty of the longer period estimation decreases
considerably when more observations exist in the vicinity of the target site. However, this
uncertainty does not decrease significantly at the shorter periods. This phenomenon is due to the
more complexities and randomness of the short period content of the motion, which makes the
added observations less effective for predicting the accurate short period content. Also, it is shown
that for longer separation distances, both short and long period estimations’ uncertainty is almost
similar, and the uncertainty saturates for a long average separation distance.

Figure 6.12 indicates the boxplot of the average separation distance from the four closest observed
sites versus whether the recorded motion’s PSA falls inside the 68% CI of the predicted one along
EW direction at two periods, T =0.4 (s) and T = 2.0 (s). It is shown in Figure 6.12 that the target
stations with lower average separation distance from their closest neighbors (higher observation
density) is more probable to include the recorded PSA in their 68% CI rather than those with lower
observation density. Similarly, Figure 6.13 demonstrates the boxplot of the average separation
distance from the four closest observed stations versus the location of the recorded motion’s PSA
along NS direction with respect to the 68% CI of predicted motion at two periods, T = 0.4 (s) and
T = 2.0 (s). Same result could be observed from Figure 6.13 for the NS direction that the target
sites prediction that their 68% CI includes the recorded PSA have in general higher observation
density close to them.
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Figure 6.13. Boxplots of the average separation distance from the four closest observed stations versus
location of the recorded motion’s PSA with respect to the predicted motion’s PSA 68% confidence
interval fora) T = 0.4 (s) and b) T = 2.0 (s) along North-South direction

The effect of observation density using a representative average separation distance from the four
closest neighbors on the accuracy and uncertainty of the predicted motions for the target sites have
been investigated.

We study the effect of other parameters such as variation of the topography and uncertainty of the
estimated site conditions on the accuracy and uncertainty of the estimated motions. The slope of
the sites is obtained from a global slope database (Fischer et al. 2008), and the uncertainty (log-
normal standard deviation) of the estimated Vs, are obtained using the proxy-based model (Ahdi
et al. 2020). Figure 6.14 demonstrates the scatter plot of the variation (logarithmic standard
deviation) of the estimated V;,, uncertainty for each target site and its four closest neighbors (i.e.,
the standard deviation of totally five logarithmic standard deviations) versus response spectrum
NRMSE along EW, NS, and RotD50 spectrum.
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Figure 6.14. Scatter plot of the variation of logarithmic standard deviation of estimated V;,  for each
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for a) EW direction, b) NS direction, and ¢) RotD50

It is observable from Figure 6.14 that the estimation error for both horizontal directions increases
for the target sites with a higher variation of the estimated V;, - uncertainty. In other words, a target

site that I, - of some of their neighbors are predicted confidently, but the others are estimated with

higher uncertainty, are more prone to have a higher prediction error. Similarly, Figure 6.15
illustrates the scatter plot of the variation (standard deviation) of the logarithmic standard deviation
of estimated V;, for each target site and its four closest neighbors versus response spectrum log-
normal standard deviation along EW and NS at T = 2.0 (s). In other words, Figure 6.15 investigates
the effect of variation of estimated site condition uncertainty around each target site on the
uncertainty of the predicted motions at long period. Figure 6.15 demonstrates that the target sites
that the site condition of some of their neighbors are predicted confidently, and the others with
higher uncertainty are prone to have higher uncertainty over long periods. This means that the
localized surrounding observations need to have estimated site conditions with almost similar

confidence to result in accurate and certain predictions.
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Figure 6.15. Scatter plot of the variation (standard deviation) of logarithmic standard deviation of
estimated V;, = for each target site and its four closest neighbors versus response spectrum log normal

standard deviation along a) EW and b) NS directions for T = 2.0 (s)
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Figure 6.16 also demonstrates the scatter plot of the average estimated slope of each target site and
its four closest neighbors versus response spectrum NRMSE along EW, NS, and the RotD50
spectrum. Figure 6.16 clearly illustrates that the slope surrounding each target site does not affect
the estimation error significantly. Thus, being on top of steep or flat surfaces for the sites does not
necessarily affect the accuracy of the GPR method estimation.
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Figure 6.16. Scatter plot of the average estimated slope of each target site and its four closest neighbors
versus response spectrum normalized root mean square error for the directions a) East-West, b) North-
South, and c) RotD50
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7. Performance Evaluation of The Proposed GPR Method on a
Combination of Network Datasets

The CSN recorded motions for the 2019 M7.1 Ridgecrest earthquake are studied to investigate the
sensitivity of the accuracy and uncertainty of the predictions to various parameters in Chapter 6.
In addition, the performance of the GPR model using the optimum hyper-parameter (regularization
factor, 1) for different observation densities is investigated in Chapter 4. It was observed that one
of the key parameters to decrease the error and uncertainty of the predictions is the density of the
observations surrounding the target site. Therefore, we aim to investigate the potential
improvement of the prediction using the added observations from other networks. There are
various recording networks in CA, such as the California Strong Motion Instrumentation Program
in the department of California Geological Survey (CGS-CSMIP) (Ryerson et al. 2021), the
California Institute of Technology (Caltech), and the National Strong Motion Project (NP). We
refer to the combination of all these networks as the California Integrated Seismic Network (CISN)
hereafter within this study.

First, we implement LOO ground motion prediction for each CISN station. In other words, we
conditionally simulate the ground motion time series at each CISN site using all other CISN
stations (excluding the target site). Second, we repeat the same procedure to predict the ground
motion time series at each CISN site, using all other CISN and CSN sites’ recorded ground motions
as observation. Comparing the predicted motions resulting from the two mentioned steps with the
recorded (so-called “exact”) ones reveals the improvement of the GPR methodology by feeding
more observations.

7.1. Ground Motion Simulation for M7.1 Ridgecrest Earthquake Using CISN
and CSN Networks

We selected 121 ground-level stations from the CISN network that recorded the 2019 M7.1
Ridgecrest earthquake in Los Angeles. These 121 recording sites are distributed over an
approximately 3,100 km? region, while the 252 ground level recording sites of CSN are located in
a much denser area over a 460 km? region. The distribution of the CISN and CSN sites over Los
Angeles is shown in Figure 7.1a. As illustrated in Table 4.2, the implemented A for prediction
through the GPR methodology is dependent on the observation density around each target site. As
discussed previously, we aim to predict the ground motions at each CISN site location using 1) all
other CISN and all CSN sites as observation; and 2) just all CISN sites as observation. We divided
the whole 121 CISN sites domain into three different subdomains; 1) Inner Domain, 2) Middle
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Domain, and 3) Exterior Domain (see Figure 7.1.b). The observation density existing in each
domain and subsequently the required A are different. On the other hand, there is one observation
density for the second scenario, where the observation for each CISN target site includes only the
rest of the CISN stations. Tables 7.1 and 7.2 show the density of observation for each domain and
implemented A (based on Table 4.2) for the target sites at the corresponding region for scenario 1
(CISN plus CSN observations) and scenario 2 (CISN observations), respectively. Tables 7.1 and
7.2 demonstrate how the sites located in the exterior domain (yellow domain in Figure 7.1b)
require a lower 1=0.2 for having more observations (CISN + CSN sites) rather than the scenario
with a smaller number of observations (CISN only) which needs 1=0.4. In addition, it is shown
that the inner domain of the CISN sites requires a smaller 1=0.05 for having both observations of
CSN and CISN sites. The transition between the inner and exterior regions contains the middle
domain (purple domain in Figure 7.1b), which requires 1=0.1.
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Figure 7.1 a) Distribution of the CSN and CISN sites recorded 2019 M7.1 Ridgecrest earthquake
within Los Angeles, and b) Division of CISN network in Los Angeles into three different sub domains
with various density of observations

Table 7.1. The implemented A for implementing GPR model at different domains within the CISN
network using CISN and CSN sites as observation

Observation Density A

Observations Target Domain Area (km?) (site/km?) A

CISN + CSN Inner 464 0.57 0.05
CISN + CSN Middle 764 0.36 0.10
CISN + CSN Exterior 3103 0.12 0.20
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Table 7.2 . The implemented A for implementing GPR model within the CISN network using CGS sites
as observation

Observation Density
(site/km?)
0.04

Area (km?)
3103

1
0.40

Observations
CISN

Figure 7.2 illustrates the distribution of the CISN sites and the NRMSE between the predicted and
recorded ground motions’ RotD50 spectrum for having just CISN sites as observation. It is worth
noting that these predictions follow the LOO procedure such that for each site as a target site, all
the rest stations are used as observation using the A mentioned in Table 7.2. As a result, the average
RotD50 spectrum NRMSE among all CISN stations is 0.47. Similarly, the average response
spectrum NRMSE along both EW and NS directions is 0.54.
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Figure 7.2 Distribution of a) all CISN sites as observation and b) the RotD50 spectrum normalized root
mean sugare error at each CISN site as a target site within the M7.1 Ridgecrest earthquake dataset

We also predict the ground motion time series at each CISN site using both CSN and CISN sites
as observation. Several steps are required to make both networks recorded motions consistent.
First, the earliest Universal Time Coordinated (UTC) start time, tstart, Of the records among all CSN
and CISN recorded motions is chosen as the time origin. We conduct zero-padding at the beginning
of all records to have them starting at the tswart. Then, the latest UTC end time, tend, Of the records
among both CSN and CISN recorded motions is chosen as the end time of all records, and a zero-
padding at the end of all records is conducted to have all of them end at the tena. Finally, The largest
time step of the recorded motions among all records, dt = 0.02 (s), is selected as the target time
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step of all records, and a down-sampling procedure is implemented over those records with a
smaller time step. Lastly, all the CISN recorded motions are rotated to be parallel to the direction
of horizontal components of CSN records, which are in the direction of EW and NS, respectively.
By taking these steps, all the CSN and CISN records will start and end simultaneously with the
same time step. Figure 7.3 depicts the distribution of the CISN and CSN stations (observations)
and the RotD50 spectrum NRMSE at each CISN network’s site using all CISN and CSN sites as
observations.
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Figure 7.3 Distribution of a) all CISN and CSN sites as observation and b) the RotD50 spectrum
normalized root mean suqare error at each CISN site as a target site within the M7.1 Ridgecrest
earthquake dataset

The average RotD50 spectrum NRMSE for all CISN sites is 0.39 (Figure 7.3). This means that
252 added CSN observations decreased prediction error by 17%. Similarly, the average response
spectrum NRMSE along EW and NS directions are 0.43 and 0.44, respectively. Therefore, the
prediction error along EW and NS decreased by 20% and 18.5%, respectively. To compare the
estimation error between two scenarios, we plot the PSA NRMSE along EW, NS, and RotD50
spectrum for both scenarios within Figures 7.4 through 7.6, respectively. Figure 7.4 indicates that
the prediction error for EW decreased after having more observations of the CSN dataset,
especially within the inner domain. Furthermore, it is shown that most of the higher prediction
errors (red stations in Figure 7.4) are in the outer domain, where there are not any added
observations. Similar results are observed for the NS direction’s response spectrum and RotD50,
shown in Figures 7.5 and 7.6, respectively. Table 7.3 compares the prediction error along each
horizontal direction and RotD50 spectrum within different domains of the CISN for two scenarios.
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Table 7.3 . The Prediction Error along both horizontal directions as well as RotD50 spectrum within

different Domains

East-West North-South RotD50
Domain Observations  Average Error Average Error Average Error
NRMSE Reduction” NRMSE Reduction NRMSE Reduction
CISN + CSN 0.33 0.37 0.29
0, 0, 0,
Inner CISN 0.58 43% 057 35% 0.50 42%
. CISN + CSN 0.56 0.50 0.47
0 0 0
Middle CISN 0.73 23% 0.56 11% 0.61 23%
. CISN + CSN 0.45 0.46 0.41
0, 0, 0,
Exterior CISN 0.50 10% 053 13% 0.45 9%

* Error Reduction shows the reduction in the prediction error in two scenarios (i.e., due to the added CSN sites)

Table 7.3 demonstrates that the added CSN sites decreased the average prediction error among all
sites within each domain. Table 7.3 shows that added CSN sites decreased the NRMSE along EW
and NS directions for the CISN sites within the inner domain by 43% (Figure 7.4) and 35% (Figure
7.5), respectively. Table 7.3 illustrates the added CSN sites have the most and least effects on the
prediction error for the inner and outer domains’ target sites, respectively.

We also aim to investigate the added observations from CSN sites’ effect on the prediction errors
at both short and long-period content of the motions. To do so, we plotted the distribution of the
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relative error at two periods, T = 0.4 (s) and T = 2.0 (s), for EW, NS, and RotD50 spectra within
Figures 7.7 through 7.12. Tables 7.4 and 7.5 demonstrate the average errors for short and long
period content, T = 0.4 sand T = 2.0 s, respectively. As is shown in both Tables 7.4 and 7.5, the
error reduction at both short and long periods, due to the added CSN sites as observation, is highest
within the inner domain and lowest for the outer domain. In addition, the added observations
improved the prediction in the short period (T = 0.4 s) more than the long period (T = 2.0 s) within
the inner domain. The reason might be the density of the added (CSN) observations between
previously existing CISN sites, which updated the GPR model with information about the short-
length waves to make the short-period predictions more accurate. In addition, the long period
prediction without added CSN observations was quite accurate within inner domain. Thus, the
additional observations are not necessary to improve the current long-period prediction.

a) b)
N Relative Error N

@ <01 Z.
oZ A @ 0.10-0.15 o A
o] © 015-020 [ 7
X > © 0.20-0.30 =

© © 0.30-0.40
Z O 0.40-0.50 Z
& 0 050-060 [ &
< © 0.60-0.70 <
0 |@ © 0.70-0.80 o g
Z @ 0.80-0.90 z
o ® >09 o |
. e, =3
4 e Z
3] S <]
o g o
o
e e
& ) &
P @, P
Z Z
o o
*®1 0 1
2 | % |
@ o v o

0205101520Ko EOSIOISZOKm.
e _
“ 118.4°W 118.2° W 118° W = 118.4°W 118.2° W 118° W

Figure 7.7 Distribution of response spectrum relative error at T = 0.4 (s) along EW direction for having
a) CISN sites and b) all CISN and CSN sites as observations for the M7.1 Ridgecrest earthquake
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Table 7.4 . The predicted motions’ response spectrum relative error at T = 0.4 (s) along both horizontal
directions as well as RotD50 spectrum within different Domains

East-West North-South RotD50
Domain  Observations  Average Error Average Error Average Error
NRMSE Reduction” NRMSE Reduction NRMSE Reduction
CISN + CSN 0.29 0.24 0.23
0, 0, 0,
Inner CISN 0.56 48% 051 53% 0.49 53%
. CISN + CSN 0.57 0.36 0.36
0, 0, 0
Middle CISN 0.64 11% 0.39 8% 0.46 22%
. CISN + CSN 0.38 0.39 0.38
0, 0, 0,
Exterior CISN 0.45 15% 0.44 11% 0.39 2%

* Error Reduction shows the reduction in the prediction error in two scenarios (i.e., due to the added CSN sites)

Table 7.5 . The predicted motions’ response spectrum relative error at T = 2.0 (s) along both horizontal
directions as well as RotD50 spectrum within different Domains

East-West North-South RotD50
Domain  Observations Average Error Average Error Average Error
NRMSE Reduction NRMSE Reduction NRMSE Reduction
CISN + CSN 0.25 0.21 0.22
0, 0, 0,
Inner CISN 0.36 30% 0.40 48% 0.32 31%
. CISN + CSN 0.62 0.42 0.51
0, 0, 0,
Middle CISN 0.83 25% 0.43 2% 0.68 25%
. CISN + CSN 0.37 0.37 0.35
0, 0, 0,
Exterior CISN 0.43 14% 0.44 16% 0.37 5%

59



We also demonstrate the logarithmic standard deviation of one hundred generated ground motion
realizations” PSA at two periods, T = 0.4 (s) and T = 2.0 (s), before and after added CSN
observations in Tables 7.6 and 7.7, respectively.

Table 7.6 . The predicted motions’ response spectrum log normal standard deviation at T = 0.4 (s) along
EW and NS directions within different Domains

East-West North-South
Domain  Observations  Average Uncertainty ~ Average Uncertainty
In Std.! Reduction? In Std. Reduction
CISN + CSN 0.52 0.49
-0, _— 0
Inner CISN 0.51 2% 0.50 2%
. CISN + CSN 0.57 0.55
- 0, _— -0
Middle CISN 0.51 11% 0.53 4%
. CISN + CSN 0.56 0.56
- 0, _ - 0,
Exterior CISN 051 10% 0.50 12%

! Average of logarithmic standard deviation of PSA at T among all stations
2Reduction of average logarithmic standard deviation of PSA at T among all stations due to added CSN sites
(negative values mean uncertainty has been increased)

Table 7.7 . The predicted motions’ response spectrum log normal standard deviation at T = 2.0 (s) along
EW and NS directions within different Domains

East-West North-South
Domain  Observations  Average Uncertainty ~ Average Uncertainty
In Std. Reduction In Std. Reduction
CISN + CSN 0.49 0.49
0, _— 0,
Inner CISN 0.50 2% 0.53 8%
. CISN + CSN 0.55 0.56
-10, _ -0,
Middle CISN 0.54 1% 0.54 3%
. CISN + CSN 0.57 0.56
- 0, _ - 0,
Exterior CISN 0.50 14% 0.50 12%

As is shown in Table 7.6, the added CSN sites as observation do not necessarily decrease the
uncertainty of predicted motions at short periods. It is recognized that the short-periods’
uncertainty can even increase for the sites outside the CSN network (middle or exterior domains).
The reason is there is higher randomness for recorded short-period content of the ground motions;
thus, the added input observation cannot necessarily lead to more certain short-period predictions.
On the other hand, the uncertainty of the longer period content of the motions decreases inside the
added observation CSN network (inner domain). Yet, the uncertainty of the estimated ground
motions in longer periods can even increase for the target sites outside the added observation
network as the inner observations cannot provide much information about exterior predictions.

We chose five sites within the inner domain of the CISN network to show the improvement of the
predicted results after adding CSN sites as observations. Figure 7.13 shows the selected five sites
for result illustration. These five sites are picked as samples to compare the predicted motions’
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velocity-time series and RotD50 spectrum with the recorded ones. Figure 7.14 demonstrates the
predicted motions’ RotD50 response spectrum and velocity time series along EW direction for
CISN plus CSN and only CISN sites as observation. It is observable within parts (a) and (b) of
Figure 7.14 how the amplitude of the velocity time series is over-predicted for having just CISN
sites as observation. The added CSN sites as observation to the GPR model made the predicted
ground motion time series match the recorded one. Similarly, the response spectrum of the
prediction becomes closer to the recorded ones having more observations from CSN sites,
especially within the shorter periods (Figures 7.14b and 7.14c). Readers can refer to Appendix A
to observe more results for other test sites within Figure 7.13.
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observations and the five chosen CISN test sites within the M7.1 Ridgecrest earthquake dataset
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Figure 7.14 The RotD50 and velocity time series of the predicted using just CISN and CISN plus CSN
observation as well as the exact motions along East-West direction for the chosen test sites a) No. 1, b) No. 2,
¢) No. 3, d) No. 4, and e) No. 5 within the CISN for M7.1 Ridgecrest earthquake
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7.2.  Simulation of Ground Motion for M4.5 South EI Monte Earthquake Using
CISN and CSN Networks

We investigated the performance of the GPR, having more added observations for the 2020 M4.5
South EI Monte earthquake that happened on September 18", 2020. Table 7.8 summarizes the
features of the South ElI Monte earthquake used in this study.

Table 7.8. The 2020 M4.5 South El Monte earthquake features (USGS, 2020)

Date UTCtime M Epicenter Depth
September 19", 2020  06:38:46 4.5 South El Monte  16.9 km

We used 95 and 215 ground-level sites within Los Angeles and recorded the M4.5 South EI Monte
earthquake from CISN and CSN, respectively. It is worth noting the number of stations obtained
after removing the stations with processed records with a too narrow usable bandwidth. The reason
for filtering out of those stations is that the ultimate predicted motions’ usable bandwidth is the
mutual usable bandwidth among all observed motions. Therefore, it is required to detect those
observations with too narrow bandwidth and remove them. The mutual usable bandwidth among
all CSN and CISN stations are (0.11 s — 0.57 s) and (0.10 s — 0.55 s) for EW and NS directions,
respectively. The distribution of the CISN and CSN stations over the Los Angeles area is shown
in Figure 7.15 a. We used the similar three defined subdomains, Inner, Middle, and Exterior, to
allocate the corresponding regularization factor, A, for each region (Figure 7.15 b).
a) b)
N ' ' ' = CISN Sites N ' ' T+ CISN Sites

A * CSN Sites A o CSN Sites
% Epicenter % Epicenter
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Figure 7.15 a) Distribution of the CSN and CISN sites recorded 2020 M4.5 South ElI Monte earthquake
within Los Angeles, and b) Division of CISN network in Los Angeles into three different sub domains
with various density of observations
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We have implemented two different analyses aiming to estimate the whole ground motion time
series at each CISN site location using 1) All other CISN and all CSN sites’ motions as observation,
and 2) just all other CISN sites as observation. For the first scenario, where we divided the whole
CISN network into three different subdomains based on their observation density, we must set
three values of A for each subdomain using the corresponding density and Table 4.2. On the other
hand, we used just one value of 4 for the second scenario as just one observation density is
considered for the whole CISN network. Tables 7.9 and 7.10 depict the observation density and
implemented A (based on Table 4.2) for the target sites at each domain. It is worth mentioning that
the required A for the inner domain for having both CISN and CSN sites and the A for having just
CISN sites as observation are obtained using logarithmic interpolation and extrapolation within
Table 4.2, respectively.

Table 7.9. The implemented A for implementing GPR model at different domains within the CISN
network using CISN and CSN sites as observation for 2020 M4.5 South El Monte earthquake

Observation Density A

Observations Target Domain Area (km?) (site/km?) A

CISN + CSN Inner 464 0.46 0.08
CISN + CSN Middle 764 0.30 0.10
CISN + CSN Outer 3103 0.10 0.20

Table 7.10 . The implemented A for implementing GPR model within the CISN network using CISN sites
as observation for 2020 M4.5 South EI Monte earthquake

Observation Density
(site/km?)
CISN 3103 0.03 0.50

o

Observations Area (km?)

Figure 7.16 shows the distribution of CISN sites and the calculated NRMSE between the predicted
and recorded motion’ RotD50 spectrum for having just CISN sites as observation. These
predictions follow the LOO procedure in which for each site as a target site, all the rest CISN
stations are used as observation. The average RotD50 spectrum NRMSE among all CISN sites is
0.79. Similarly, the average NRMSE among all sites for prediction along EW and NS directions
response spectra are 0.88 and 0.95, respectively.
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Figure 7.16 Distribution of a) all CISN sites as observation and b) the RotD50 spectrum normalized
root mean sugare error at each CISN site as a target site for the M4.5 South EI Monte earthquake

We estimated the ground motion time series at each CISN site location as a target site using all
CISN and all CSN sites as observation. The regularization factor used for prediction is chosen
based on the corresponding domain in which the target site is located (cf. Table 7.9). Figure 7.17
shows the distribution of the CISN and CSN stations (observations) and the RotD50 spectrum
NRMSE between the predicted and recorded motions using all the rest CISN and CSN sites as
observations. The average RotD50 spectrum NRMSE among all CISN sites is 0.76. Similarly, the
average NRMSE among all sites for prediction along EW and NS directions response spectra are
0.86 and 0.94, respectively. We plot the response spectra NRMSE distribution along EW, NS, and
RotD50 for both scenarios to better compare the predictions” NRMSE within different subdomains
before and after added observations in Figures 7.18 through 7.20, respectively.
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Figure 7.18 shows that the prediction error for the EW direction does not decrease considerably
from having a lower number of observations (Figure 7.18a) to having more observations added by
CSN (Figure 7.18b), especially within the inner domain. On the other hand, Figure 7.19
demonstrates that the error prediction along the NS direction decreases considerably after having
more observation (Figure 7.19). Therefore, adding more observation provides additional
informative data for the GPR about the spatial variation of the ground motion along the NS
direction over the epicentral region. However, these added observations did not provide significant
new information along the EW direction. We summarized the average prediction error (among all
test sites) in Table 7.11.

Table 7.11 . The Prediction Error along both horizontal directions as well as RotD50 spectrum within
different Domains for the M4.5 South EI Monte earthquake

East-West North-South RotD50
Domain  Observations  Average Error Average Error Average Error
NRMSE Reduction NRMSE Reduction NRMSE Reduction
CISN + CSN 0.54 0.46 0.35
0 _ 9 _— 9
Inner CISN 058 7% 0.61 25% 0.50 30%
. CISN + CSN 0.60 0.60 0.50
-20, _ _ 0, [t 0,
Middle CISN 0.58 3% 0.50 20% 052 4%
CISN + CSN 0.98 1.10 0.90
0 - 0 e 0
Outer CISN 1.0 2% 1.10 0% 0.90 0%

Table 7.11 illustrates how the NS direction experienced a higher error reduction due to the added
observation with respect to the EW direction. It is recognizable that the average prediction error is
almost unchanged along the EW direction within the inner, middle, and exterior domains due to
the added CSN observation. The error reduction for the NS direction within the inner domain is
considerable, although the average error reduction within the middle and exterior domains are
almost negligible. It is worth mentioning that the middle domain for the M4.5 South El Monte
earthquake dataset includes nine stations, which could affect the average prediction results to make
a reliable conclusion, yet the RotD50 prediction error clearly illustrates that the added CSN sites
as observation mostly improved the GPR model’s performance within the inner domain and rarely
for the middle and exterior domains.

We generated one hundred random realizations of ground motions at each target site (within the
CISN network) for both scenarios, with and without CSN observations. These generated random
realizations enabled us to have estimated motions’ uncertainty (standard deviation of response
spectra) at different periods. Table 7.12 shows the logarithmic standard deviation of predicted
motions’ response spectrum at the period T = 0.5 (S), before and after added CSN observations. It
should be noted that the longest usable period that we are able to investigate its uncertainty is
T=0.5 (s), yet, it is observed from Figures 6.10a and 6.11a that the uncertainty of the estimated
motions at the short period (T = 0.5 s) is not much affected by the number of observations.
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Table 7.12. The predicted motions’ response spectrum log normal standard deviation at T = 0.5 (s) along
EW and NS directions within different Domains for the M4.5 South EI Monte earthquake

East-West North-South
Domain  Observations  Average Uncertainty ~ Average Uncertainty
In Std. Reduction In Std. Reduction
CISN + CSN 0.53 0.54
-120, _ -100
Inner CISN 0.47 12% 0.49 10%
. CISN + CSN 0.56 0.56
-0, _ -0,
Middle CISN 0.54 3% 0.54 3%
CISN + CSN 0.57 0.55
-110 _— -100
Outer CISN 0.51 11% 0.50 10%

! Average of logarithmic standard deviation of PSA at T among all stations

Table 7.12 claims that the added observation from CSN causes a small amount of increase in the
uncertainty of the predicted motions at the short period content (at 2.0 Hz frequency). This
demonstrates that the added observation did not affect the prediction uncertainty of short-length
waves. They could also cause uncertainty increment as the added observations are not adequately
dense with respect to those wavelengths corresponding to the short period content. Thus, as there
is higher randomness in the higher frequency content of the motions, the added observation cannot
necessarily improve the uncertainty of the predicted content. This observation is consistent with
the previous observation from the 2019 M7.1 Ridgecrest earthquake dataset. In general, the added
observation could decrease the uncertainty of the low frequencies content prediction within the
added observation network (Table 7.7). However, such an effect cannot necessarily be expected
for the higher frequencies’ prediction (Tables 7.6 and 7.12).

We chose five stations within the inner domain of the CISN (Figure 7.21) to illustrate the predicted
results for both scenarios with and without the added CSN sites as additional observations. These
five sites are chosen just as samples to compare the predicted motions’ velocity time series and
PSA spectrum along the NS direction with the corresponding recorded (exact) ones. Although
there are 95 sites within all inner, middle, and outer regions, we chose five of them within the inner
domain where the added CSN sites exist. Figure 7.22 demonstrates the predicted motions’ PSA
and velocity time series along the NS direction for both scenarios. It is observable from Figure
7.22 that how the amplitude of the velocity-time series becomes closer to the exact one for having
more observations from CSN.
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Figure 7.21 Distribution of RotD50 NRMSE for having a) CISN and b) all CISN and CSN sites as
observations and the five chosen CISN test sites within the M4.5 South EI Monte earthquake dataset

It is seen in Figure 7.21 that the majority of the CISN test sites’ predicted results improved for
those which are located inside the inner domain. However, there are a few sites where their
predicted results either did not change considerably or worsened with respect to the case having
just CISN observation. The readers can refer to Appendix B to see the prediction results for other
CISN test sites. It is worth noting that the predicted ground motions along NS improved more than
the other perpendicular direction, EW, within the inner domain.
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Figure 7.22 The RotD50 and velocity time series of the predicted using just CISN and CISN plus CSN
observation as well as the exact motions along North-South direction for the chosen test sites a) No. 1, b) No.
2, ¢) No. 3, d) No. 4, and e) No. 5 within the CISN for M4.5 South EI Monte earthquake
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Concluding Remarks

A fine-tuned optimized hyperparameter of the GPR model, the regularization factor, is introduced
based on the observation density within the target network. This hyperparameter enables the users
to implement the GPR model for various conditions with a different number of observations. It is
shown that the optimized regularization factor, 4, is smaller for a region with higher observation
density compared to those with lower densities. We also introduced a methodology to generate
samples of ground motion realizations rather than one estimated ground motion using mean DFT
coefficients for the target sites. The generated samples of ground motions are shown for the M7.0
Hayward fault scenario earthquake physics-based simulated dataset and the 2019 M7.1 Ridgecrest
earthquake.

We investigated the uncertainty of the predicted motions within the 2019 M7.1 Ridgecrest
earthquake dataset using the randomly generated ground motions. It was observed that the number
of observations close to the target site plays a vital role in the prediction error, especially at long
periods. The prediction error generally was higher for the target sites with lower observations close
to them. In addition, the higher density of observation close to the target site can decrease the
uncertainty of the predicted motions over long periods. However, the estimated short period
content’s uncertainty is less affected by the number of observations close to the target location. It
was observed that the recorded motions response spectra could be captured by the 68% confidence
interval of the predicted motion’s spectrum for the sites with a higher number of observations close
to them. It was also shown that the higher uncertainty variation for the estimated site condition at
the target sites and its neighboring observed sites could increase the prediction error and
uncertainty. We concluded that the slope variation of the target site and the closest neighbors do
not have a significant effect on the prediction error.

The effect of added observations from other seismic networks on the prediction error and
uncertainty is also studied. To do so, we predicted the ground motions of the 2019 M7.1 Ridgecrest
and 2020 M4.5 South EI Monte earthquakes recorded by CISN (within Los Angeles) sites using
two sets of observation; 1) The whole CISN dataset and 2) The whole CISN and CSN datasets.
The results illustrated that the prediction for the target sites located within the added observation
network could considerably improve. This improvement occurred at both horizontal components
for the Ridgecrest earthquake. The prediction error reduction due to the added network happened
along one horizontal component (NS) more considerably for the M4.5 South EI Monte earthquake,
while the other perpendicular direction (EW) experienced less improvement. Both earthquakes
showed that the prediction uncertainty at short periods might not change significantly due to the
added observations from other networks.
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Appendix A

The estimated ground motion results for 2019 M7.1 Ridgecrest earthquake dataset at CISN sites
using 1) just all CISN sites and 2) all CSN and CISN sites as observation are shown in Figure A2.
This is the test results for 10 sites that are not shown in Figures 7.13 and 7.14.
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observations and ten chosen CISN test sites within the M7.1 Ridgecrest earthquake dataset
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Figure A2. The RotD50 and velocity time series of the predicted using just CISN and CISN plus CSN observation and
exact motions along East-West direction for the chosen test sites a) No. 1, b) No. 2, ¢) No. 3, d) No. 4, e) No. 5, f) No.
6, g) No. 7, h) No. 8, i) No. 9, and j) No. 10 within CISN network for M7.1 Ridgecrest earthquake
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Appendix B

The estimated ground motion results for 2020 M4.5 South El Monte earthquake dataset at CISN
site locations using with 1) just all CISN sites and 2) all CSN and CISN sites shown in (Figure B1)
are depicted in the Figure B2. This is the test results for 10 sites that are not shown in Figures 7.21
and 7.22.
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Figure B1. Distribution of RotD50 NRMSE for having a) just CISN sites and b) all CISN and CSN sites as
observations and ten chosen CISN test sites within the M4.5 South El Monte earthquake dataset
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Figure B2. The RotD50 and velocity time series of the predicted using just CISN and CISN plus CSN observation
and exact motions along North-South direction for the chosen test sites a) No. 1, b) No. 2, c) No. 3, d) No. 4, €) No. 5,
f) No. 6, g) No. 7, h) No. 8, i) No. 9, and j) No. 10 within CISN network for M4.5 South El Monte earthquake
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