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Abstract 
Seismic risk for spatially distributed infrastructure is driven mainly by ground failure, defined as 
permanent ground displacements from mechanisms such as landslides, liquefaction, and seismic 
compression. Most forms of ground failure are a consequence of soil responses to ground shaking, 
which should be evaluated on a hazard-consistent scenario basis to represent spatial correlations 
of intensity measures. A companion report describes a methodology for identifying hazard-
consistent event scenarios.  

Seismic ground failure responses are evaluated based on regionally-accessible information on 
geology, groundwater hydrology, and terrain. Given these inputs, liquefaction and landslide 
displacements are predicted point-by-point on a 10 m grid using customized analysis procedures 
and logic trees for each ground failure type. For each point, these analyses provide probabilities 
that the hazard exists, probabilistic distributions (accounting for epistemic uncertainties) of related 
displacements, and displacement directions (azimuths). Series of points expected to move together 
(e.g., in a single lateral spread) are grouped into polygons. Ground failure features (landslides, 
lateral spreads) of varying sizes may occur within these polygons. The output of these analyses are 
feature locations, sizes, displacement amounts, and displacement azimuths, which can be applied 
in subsequent fragility and risk analysis of distributed infrastructure systems. 

The report presents the data considered in the regional geo-hazards assessments, the methodologies 
for liquefaction and landslide displacements analyses and the grouping thereof into polygons, and 
the results of these analyses for an example region in southern California for scenario events.  
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1 Introduction 
1.1 Project Overview 
Seismic ground failure from liquefaction, landslides, and related phenomena are substantial 
sources of earthquake hazards to people and infrastructure. Procedures for the assessment of these 
hazards [e.g., Youd et al. 2001, Blake et al. 2002] are largely derived for application to individual 
sites, such as a building where seismic design is to be performed. As such, these procedures are 
conditioned on relevant geotechnical parameters as would be derived from a site-specific 
geotechnical investigation (i.e., soil stratigraphy, ground water level, penetration resistance, shear 
strength, etc.). Moreover, the ground motions used with these procedures are typically derived 
from location-specific probabilistic seismic hazard analyses. 

Studies of seismic risk to distributed infrastructure systems challenge the traditional paradigm for 
ground failure analysis in two key respects: (1) the infrastructure can occur across a large spatial 
domain, potentially involving many different geological and terrain conditions associated with 
different types and levels of ground failure hazards; (2) seismic ground motion hazards derived for 
a single site, or for a collection of sizes along the system at a consistent hazard level, fail to 
accurately describe the distribution of shaking demands that the distributed infrastructure systems 
may experience. This report describes analysis procedures developed to address the first of these 
issues and presents results for an example region in southern California. The focus here is on two 
specific forms of seismic ground failure – seismically-induced landslides and liquefaction-induced 
settlement and lateral spreading. The second issue above was addressed in contemporaneous 
research and is described in a companion report [Wang et al. 2023]. 

The specific application for which the present work was performed is natural gas storage and 
distribution infrastructure in California (Figure 1.1). The authors are part of a larger team 
developing a tool to evaluate the risk to this infrastructure system from earthquake hazards. This 
tool will have modules that characterize various hazards, infrastructure component fragilities, and 
system level risk. 
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Figure 1.1. Natural gas pipelines and gas storage facilities from the California Geological 
Survey (CGS) within the State of California. 

 
 
 

1.2 Overview of Analysis Framework 
The proposed analysis framework takes as input the following information: 

1. Scenario ground motions with realistic spatial distributions of ground shaking that are 
consistent with one or more relevant ground motion hazard levels [Wang et al. 2023]. 

2. Regional information on surface geology that is mapped in a consistent manner across the 
study area, which in the present case is the entire State of California. We use geologic maps 
prepared by the California Geological Survey [Wills et al. 2015].  
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3. Information on ground water depth from a global model [Fan et al. 2013], updated based 
on local well data [California Water Board, 2020]. 

4. Digital elevation models at 10 m horizontal resolution, as provided by the USGS [2018]. 

Liquefaction and landslide displacement estimates conditioned on the above information carry 
large epistemic uncertainties because the information on site conditions (from 2-4) does not 
directly provide the information required to assess these ground failure hazards. Instead, we 
estimate the relevant soil properties from applicable databases conditioned on location-specific 
surface geology; the uncertainties associated with these soil property estimates are referred to as 
parametric. Moreover, once applicable ranges of those properties are defined, alternate methods 
of analysis can be applied, which is a separate source of epistemic uncertainty known as modeling 
uncertainty. These uncertainties are considered using logic tree frameworks, as described in 
Chapters 3 and 4.  

The direct outcomes of both the landslide and liquefaction models are attributes of displacements 
for a particular ground motion scenario on a 10 m grid spacing, as schematically illustrated in 
Figure 1.2. At each grid point, the following information is provided: 

1. Probability that ground failure from a particular mechanism (landslide or liquefaction) 
occurs; in the landslide case, this is taken as the probability that a certain displacement 
level is exceeded, whereas for liquefaction, it is the probability of both liquefaction-
susceptible soils being present and liquefaction triggering having occurred; 

2. If the ground failure hazard exists, a distribution of displacement levels is provided such 
that a conditional probability density function can be derived; 

3. Azimuth of displacement, which is generally taken as the horizontal direction of maximum 
slope from the 10 m digital elevation model. 

As shown in Figure 1.2, grid-point displacements are grouped into polygons. This grouping takes 
into account geomorphic features of the area as described in Chapter 3 and 4. Within the polygons, 
individual ground failure features (i.e., landslides or lateral spreads) of varying sizes may occur, 
which are estimated using empirical models. Additionally, ranges of displacement amounts and 
azimuths may occur within the polygons that are broader than those from (2-3) above. Within the 
context of the present gas infrastructure risk study, the information provided for subsequent 
fragility analyses are polygon locations, distributions of feature sizes within polygons, and 
displacement amounts and directions within polygons. As described in Chapters 3-4, in the 
development of the logic trees, checks are made to ensure that the cumulative sizes of features 
relative to the overall area of study regions are consistent with observed rates of ground failure in 
past earthquakes. 
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Figure 1.2. Schematic showing grid locations where displacements are computed. Arrows at grid 
points indicate displacement amounts and azimuths, which are uncertain (i.e., the amount 
depicted would represent a particular percentile as derived from logic tree analyses). The polygon 
depicted by the area marked as AL indicates a zone where landslides or lateral spreads of varying 
sizes may occur. 

 
 

1.3 Organization of Report 
Following this introduction, Chapter 2 presents the data sources considered in our regional geo-
hazards analyses. Chapters 3 and 4 present the framework for the analysis of probabilities of 
ground failure at grid points, displacement amounts at grid points and their uncertainties, and 
grouping of computed displacements into polygons for the purpose of providing displacement 
features that are reasonably consistent with empirical models in terms of their sizes and 
pervasiveness. Chapter 5 presents example results.  
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2                 Statewide Data Sources 
Analyses and models presented in this report rely upon State-wide resources and databases. Our 
compilation of such resources includes published information and data available from the 
California Geologic Survey (CGS) upon request. There are three main categories of information: 
(1) geology maps, (2) digital elevation models, (3) groundwater, (4) cone penetration test (CPT) 
soundings, and (5) shear strength data from laboratory tests.  

2.1 Geology Maps 
This project uses the statewide geologic map developed by Wills et al. (2015) to assign regional-
scale geotechnical parameters (e.g., shear strength for landslides) to each geologic unit in 
California as described in Chapters 3 and 4. This map defines various bedrock units and Quaternary 
sediments based on age and depositional environment (e.g., separating alluvial fans from 
lake/marine deposits into fifteen geologic units across the state as shown in Figure 2.1. This map 
provides a consistent representation of the spatial distribution of geologic units at a scale of 
1:1,500,000. Although developed to assign values of shear wave velocity (Vs30) state-wide, the 
geologic groupings are also considered appropriate for assigning other geotechnical parameters. 

Although the Wills et al. (2015) map provides a consistent geologic representation across the state, 
there are regional differences between Northern and Southern California with respect to the shear 
strength characterization within the different geologic units. While the boundary between the two 
regions is not well defined, this study utilizes the boundary marked at the base of Coast Ranges, 
Sierra Nevada and Basin and Range in Figure 2.2 for strength assignment purposes. 
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Figure 2.1. Geologic units from Wills et al. (2015), along with natural gas pipelines, and gas 
storage facilities within California (adapted from Zimmaro et al., 2021). 
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Figure 2.2. Geomorphic provinces of California (https://www.conservation.ca.gov/cgs/california-
geotour) 

Because landslides are not expected to occur on flat slopes, the scope of this study is limited to 
only 10 of the 15 units defined by Wills et al. (2015) that comprise areas with slopes steeper than 
10°.  These units are the older alluvium units associated with relatively steeper slopes (Qal3, Qoa 
and QT), Tertiary units (Tsh, Tss, Tv), Cretaceous units (sp, Kss, KJf), and crystalline units (Table 
2.1). Eight of the ten geologic units listed in Table 2.1 are present in both Northern and Southern 
California, while sp and KJf are only found in Northern California. 

 

 

 

 

 

 

https://www.conservation.ca.gov/cgs/california-geotour
https://www.conservation.ca.gov/cgs/california-geotour
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Table 2.1: California geologic units considered in this study with percentage of state covered by 
each geologic unit. General descriptions taken from Wills et al. (2006, 2015).  

 

Table 2.1 shows that the geology of California consists largely of Crystalline rocks present in the 
Sierra Nevada mountains followed by Tertiary Volcanics prevalent in the upper part of Northern 
California. Weakly cemented sedimentary rocks such as Tertiary Shale (Tsh) and Tertiary 
Sandstones (Tss) are materials known to be highly susceptible to landslides based on their 
lithology (Wills et al., 2005). Tsh is a fine-grained material consisting mostly of claystone, 
mudstone and shale, while Tss is coarse-grained consisting primarily of sandstone and 
conglomerate. 
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2.2 Digital Elevation Model 
Terrain and elevation-related data and maps were developed using the national elevation dataset 
(USGS, 2018), which is a high resolution (10-m grid points) Digital Elevation Model (DEM) 
derived from light detection and ranging (LIDAR) data and made available to us by CGS. DEMs 
are used to obtain elevations that are considered in groundwater estimates. Ground slopes 
computed from DEMs are used in landslide displacement analyses and in empirical models for 
prediction of lateral spread displacements.  

 
 

2.3 Groundwater 
Groundwater hydrology was defined using the California well database (California Water Board, 
2020; Figure 2.3) and a global model reliant upon climate, terrain, and sea level data (Fan et al., 
2013). We had access to 31,359 unique well locations, and 1,045,240 water table depth 
measurements taken between 1914 and 2015. On average, there were 33 measurements per well. 
Figure 2.4 summarizes the measurements per well, and Table 2.2 summarizes the number of wells 
and measurements by geologic unit.  

 

Figure 2.3. California well database (data from the California Water Board, 2020) (adapted from 
Zimmaro et al., 2021) 
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Figure 2.4. Histogram indicating the number of measurements per well; location of wells is 
shown in Figure 2.3  

 
 

Table 2.2. Number of wells and measurements by geologic unit 
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2.4 Cone Penetration Test Soundings 
Data were downloaded from the publicly available USGS online repository: 
https://earthquake.usgs.gov/research/cpt/. The USGS CPT uses a 23-ton truck. There are 910 CPT 
soundings available in California, most of which are concentrated in the two major urban areas of 
Los Angeles and San Francisco. The locations of the CPT sounding sites are shown in Figure 2.5 
below. For each site, we had access to tip resistance (Qt), sleeve friction (Fs) and the derivative 
friction ratio (Fs/Qt [%]) as a function of depth.  

 
 

Table 2.3. Representation of CPTs used in this project by unit 

 

https://earthquake.usgs.gov/research/cpt/
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Figure 2.5. Geographic distribution of CPTs across the state of California. 

2.5 Geotechnical Borehole Database 
Shear strength data as derived from laboratory tests was used to derive Mohr-Coulomb strength 
parameters for use in seismic landslide analyses (Chapter 3). The soil specimens tested are from 
boreholes conducted as part of geotechnical investigations for sites in California. The data that we 
had access to for this study is for projects reviewed by the Office of Statewide Health Planning 
and Development (OSHPD) (pre-2021), now the Department of Health Care Access and 
Information (HCAI). These projects are related to health care facilities and schools in California.  

A database of laboratory test results was provided to us by CGS on April 8, 2020. This is a 
relational database with more than 20,000 borehole data points, grain size distribution data, and 
shear strength values from geotechnical laboratory data. This database was accessed using SQL 
commands and data was extracted by means of specific queries.  
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Shear strength parameters for landslide analysis were obtained from the CGS database. The 
database contains over 13,000 boreholes with c′ and 𝜙𝜙′ from geotechnical strength testing (mostly 
direct shear tests conducted by consultants), as well as lithology and geologic descriptions of 
samples reported in the borehole logs. These boreholes, as shown in Figure 2.6, are concentrated 
around the San Francisco Bay area in Northern California and Los Angeles area in Southern 
California.  The data from the San Francisco Bay area will be used for geologic units throughout 
Northern California, and the data from the Los Angeles area will be used for geologic units 
throughout Southern California. 

  
Figure 2.6: Map showing CGS borehole sample locations in San Francisco Bay and Los 
Angeles areas 

The geologic units used to define the lithology of samples in the CGS borehole database are not 
the same as the Wills et al. (2015) geologic units, and generally are more detailed. The CGS 
geologic units were reviewed and assigned to the appropriate surface geologic units from Wills et 
al. (2015) according to their descriptions and the interpretation of the lithology and grain sizes. 

Additionally, geologic unit descriptions available in unpublished working files provided by Chris 
Wills, in CGS seismic hazard zoning reports (SHZR), and in Detweiler and Wein (2017) were 
consulted to aid in grouping the borehole data lithologies into appropriate geologic units. The 
SHZR and Haywired reports include shear strength parameters that were used to compute 
estimates of seismic landslide zones for the various geologic units in the regions assessed. These 
parameters serve as a reference for shear strength comparisons later in this section. The resulting 
CGS borehole geologic units that were assigned to each Wills et al. (2015) geologic unit are listed 
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in Table 2.4 for Northern California and Table 2.5 for Southern California. The descriptions for 
the geologic units listed in Table 2.2 and Table 2.3 were taken from the SHZR and Haywired 
reports. 

Table 2.4. Borehole subunits grouped with surface geologic units (Northern California). 
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Table 2.5: Borehole subunits grouped with surface geologic units (Southern California) 
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3                 Landslide Hazards 
3.1  Introduction 
The risk of earthquake-induced landslides is largely dependent on the material shear strength, 
geology, slope configuration, groundwater table and ground shaking intensity. The rigid sliding 
block approach has been used extensively to estimate the potential for earthquake-induced 
landslides on a regional scale (Dreyfus et al., 2013; Jibson et al., 2000; Jibson, 2007; Newmark, 
1965). The approach requires the estimation of the slope yield acceleration, 𝑘𝑘𝑦𝑦 which is defined as 
the horizontal acceleration that results in a factor of safety (𝐹𝐹𝑆𝑆 ) of 1.0, and 𝑘𝑘𝑦𝑦 is used with the 
ground shaking intensity to compute seismic displacements (𝐷𝐷 ).  These displacements are related 
to the potential for an earthquake-induced landslide. 

The calculation of  𝑘𝑘𝑦𝑦 often utilizes an infinite slope assumption (Figure 3.1), which is a simplified 
representation of the actual slope configuration but is an effective configuration for regional-scale 
stability analyses (Dreyfus et al., 2013; Rathje and Saygili, 2008, 2009). 

  
Figure 3.1. Representative geometric configuration of infinite slope model 

The resulting expressions to compute 𝑘𝑘𝑦𝑦 using the sliding block approach and the assumption of 
an infinite slope (Eqs. 3.1 and 3.2) are a function of the factor of safety, the effective cohesion 
(𝑐𝑐′), the effective friction angle (𝜙𝜙′), the material and water unit weights (𝛾𝛾  and 𝛾𝛾𝑤𝑤, 
respectively), the slope angle (𝛼𝛼 ), the thickness of the sliding mass (𝑡𝑡 ), acceleration due to 
gravity (g), and the proportion of sliding mass that is saturated (𝑚𝑚 ). 
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𝑘𝑘𝑦𝑦 = (𝐹𝐹𝐹𝐹−1)𝑔𝑔
cos𝛼𝛼.𝑡𝑡𝑡𝑡𝑡𝑡𝜙𝜙′+ 1

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
      (3.1) 

  

 

 

𝐹𝐹𝐹𝐹 = 𝑐𝑐′

𝛾𝛾.𝑡𝑡.sin𝛼𝛼
+ tan𝜙𝜙′

tan𝛼𝛼
�1 − 𝑚𝑚.𝛾𝛾𝑤𝑤

𝛾𝛾
�                                                    (3.2) 

  

The calculation of 𝑘𝑘𝑦𝑦 is performed on a uniform grid across the study region, typically about 10 
m. 

Recent studies (Wang and Rathje 2015, 2018) have highlighted the importance of considering the 
uncertainty of shear strengths across geologic units and accounting for these uncertainties in 
seismic landslide predictions. One approach to incorporating these uncertainties in the prediction 
analysis is the use of logic trees, which is common practice in probabilistic seismic hazard analysis 
(Du et al., 2018; Rodriguez-Marek et al., 2021; Rathje and Saygili, 2009). This project builds upon 
previous work to develop a logic tree for seismic landslide analysis that can be utilized at the state-
scale and incorporates not only parametric uncertainty but also differences in the displacement 
prediction models. The logic tree approach attempts to capture the different sources of 
uncertainties from different combinations of shear strength parameters, slope properties and 
displacement models. 

3.2  General Methodology 
The methodology employed in this study is summarized in the flow chart shown in Figure 3.2 The 
approach combines sliding displacement estimates at the grid level with identification of DEM-
based slope units to define landslide zone polygons (LZP). For each LZP, statistical distributions 
of the landslide size (which can be smaller than the LZP), landslide movement, and direction of 
movement are defined. 

The primary geospatial inputs essential for the estimation of sliding block displacements include 
a digital elevation model (DEM) for computing slope angle, digital regional-scale geologic maps, 
shear strength parameters, sliding mass thickness, water table data, and material unit weight, all of 
which are all used to compute 𝑘𝑘𝑦𝑦. The 𝑘𝑘𝑦𝑦 along with the earthquake ground motion parameters are 
used to predict the landslide displacement. 
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Figure 3.2. Methodology for regional-scale seismic landslide assessments 

The workflow presented in Figure 3.3 shows the sources of the various input parameters used in 
this study and illustrates the general procedure for computing seismic displacement at the grid cell 
level. For this study, a 10-m resolution DEM from the California Geological Survey (CGS) was 
used to derive the slope angle for the entire region. The 𝑘𝑘𝑦𝑦 is computed on the same 10-m grid 
using an infinite slope model (Eq. 3.1 and 3.2) and treating each cell as independent.  A full 
probability distribution of 𝑘𝑘𝑦𝑦 is computed from a logic tree that considers the uncertainty in each 
of the input parameters. Finally, the sliding displacements are computed using the values of 𝑘𝑘𝑦𝑦 and 
a spatially correlated ground motion field that represents ground shaking from an event. Multiple 
ground motion fields and associated weights can be considered to represent the full ground motion 
hazard curve at a location (Baker et al., 2021). 
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Figure 3.3. Workflow for computing seismic displacement at grid cell level 

Throughout this study, probability distributions of 𝑘𝑘𝑦𝑦 are re-sampled to fewer values following the 
discrete approximation approach described in Miller and Rice (1983). This approach uses a 
discretization method based on Gaussian quadrature where a finite number of values from a 
cumulative distribution function (CDF) are assigned specific weights to represent the full 
distribution. Miller and Rice (1983) developed the CDF probabilities and associated weights for 
different numbers of discrete, resampling points. 

The primary outcome of the logic tree analysis is a probability distribution of sliding displacement 
for each 10-m grid cell. It should be noted that these displacements are indicators of potential 
landslide occurrence, they do not correspond to actual expected measured displacements in the 
field. The median displacement for each cell is computed from the cumulative density function 
and clusters of cells with median displacement greater than a set threshold value are created. These 
clusters signify areas that are susceptible to landslides and may be unrealistically large. Slope units 
are then used to segment the landslide-susceptible clusters into smaller areas that represent 
individual landslide zone polygons. 

The next sections will focus on describing the assignment of shear strength to the geologic units, 
computation of statewide values of 𝑘𝑘𝑦𝑦, the prediction of the probability distributions of sliding 
displacement, the identification of landslide zone polygons, and the assignment of landslide size, 
movement, and direction to each landslide zone polygon. 
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3.3 Shear Strength Estimation 
For each geologic unit, the shear strength parameters were statistically analyzed to obtain best 
estimates of 𝑐𝑐′ and 𝜙𝜙′. A total of 1,638 and 3,295 strength values were analyzed for Northern and 
Southern California, respectively. An example of the statistical distributions of 𝑐𝑐′ and 𝜙𝜙′ for Tsh 
in Southern California is presented in Figure 3.4.  Figure 3.4 shows that the 𝑐𝑐′ data display a long 
tail that is characteristic of a lognormal distribution (Fanelli et al., 2015; Zhu et al., 2019), while 
the 𝜙𝜙′ data displays a Gaussian shape. 

 

Figure 3.4. Distributions of 𝑐𝑐′ and 𝜙𝜙′ computed from CGS borehole database for Tsh in 
Southern California, showing an example of normal and lognormal distributions. 

We statistically tested the shape of the distributions for 𝑐𝑐′ and 𝜙𝜙′ and established that it is 
reasonable to assume that 𝑐𝑐′ is lognormally distributed and 𝜙𝜙′ is normally distributed.  For the data 
shown in Figure 3.4 the mean value of the natural log of 𝑐𝑐′ is 3.05 (i.e., 21.2 kPa) with a standard 
deviation of 0.72, while the mean value of 𝜙𝜙′ is 30.2⁰ with a standard deviation of 8.5⁰. 

3.3.1       Statistical summary of 𝒄𝒄′ and 𝝓𝝓′ for each geologic unit 

A summary of the computed statistics for 𝑐𝑐′ and 𝜙𝜙′ for each of the geologic units considered in 
this study is presented in Table 3.1. The mean values of 𝑐𝑐′ and 𝜙𝜙′ were adjusted for some geologic 
units in Northern California to ensure the strength of the unit was appropriate relative to other units 
of younger or older age. No adjustments were made to Southern California geologic units. The 
final statistics for 𝑐𝑐′ and 𝜙𝜙′ in Table 3.1 are used to define the strength parameters incorporated in 
the logic tree. 
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Table 3.1. Computed statistics of shear strength parameters for each geologic unit. 

 

Graphical representations of the final shear strength parameters for each geologic unit in Northern 
and Southern California are presented in Figure 3.5. Generally, the friction angle increases with 
geologic age, but the cohesion is a bit more variable with specific units having distinct values (e.g., 
Tv in Northern California and Tss in Southern California). sp and KJf are not present in Southern 
California. 
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Figure 3.5. Plots of final shear strength parameters (a) cohesion and (b) friction angle for 
Northern California and (c) cohesion and (d) friction angle for Southern California. 

Figure 3.6 compares the values of 𝑐𝑐′ and 𝜙𝜙′ for Northern and Southern California for each geologic 
unit.  The 𝑐𝑐′ values in Northern California are higher than values obtained in Southern California 
for the same geologic units, while the reverse is the case for 𝜙𝜙′. These data are consistent with 
materials being cohesion-dominant in Northern California and friction-dominant in Southern 
California. The higher 𝑐𝑐′ values in Northern California also support the assumption of deeper 
sliding planes (larger t) used for geologic units in that region (see section on Sliding Block 
Properties). 
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Figure 3.6. Comparison between strength parameters (a) cohesion and (b) friction angle for 
Northern and Southern California. 

Because 𝑐𝑐′ and 𝜙𝜙′ work together to define the shear strength, we compute the predicted shear 
strength for each geologic unit in Northern and Southern California (Figure 3.7). For comparison 
purposes, we compute the strengths for both regions at a normal effective stress of 50 kPa even 
though the sliding surfaces in Northern California are expected to be deeper relative to Southern 
California. Figure 3.7 shows that geologic units in Northern California are consistently stronger 
than those in Southern California at the same normal effective stress except for Tv which is slightly 
lower. 

  
Figure 3.7.  Predicted shear strength at an effective normal stress of 50 kPa for each geologic 
unit for Northern and Southern California. 
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3.3.2    Comparisons with other studies 

The values of 𝑐𝑐′ and 𝜙𝜙′ were compared with regional values reported in other studies.  For Northern 
California, the shear strength parameters were compared with those used in the Haywired report 
(Detweiler and Wein, 2017) and for Southern California the shear strength parameters were 
compared with values from the CGS seismic hazard zoning reports (SHZR) and from Jibson et al. 
(2000). The specific quadrangles and geologic units used for shear strength comparison in the 
above-listed references are presented in Table 3.2 
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Table 3.2. Quadrangles and geologic units used for shear strength comparisons 

 

Figure 3.8 compares the strength parameters for Northern California and Figure 3.9 does the same 
for Southern California.  For Northern California (Figure 3.8a), the values of 𝑐𝑐′ from this study for 
five geologic units are within about +/- 10% of those from the Haywired report, but for the 
remaining units the values from this study are larger than used in the Haywired report. For 𝜙𝜙′ 
(Figure 3.8b), six geologic units are within about +/- 10% of those from the Haywired report, with 
the others both larger and smaller than the Haywired report.  Interestingly, the friction angle values 
among the geologic units from this study do not vary as much as those from the Haywired report 
(24° to 31° vs. 24° to 36°). 



   
 

31 
 

 

Figure 3.8. Comparison between Northern California strength parameters from this study and 
those from the Hayward fault scenario report for (a) cohesion and (b) friction angle 

For Southern California (Figure 3.9a), the computed 𝑐𝑐′ values for the Quaternary units tend to 
align well with those from the SHZR (within about +/- 10%), but they are larger than the SHZR 
for the older units (except for Tss). This discrepancy may be because the SHZR incorporated 
residual strength data into their shear strength parameter estimation where available (personal 
communication with CGS personnel). The computed 𝜙𝜙′ values for six geologic units are within 
about +/- 10% of those from the SHZR (Figure 3.9b). Similar to Northern California, the 𝜙𝜙′ values 
from this study generally fall within a narrower range (between 30o – 34o) than the SHZR (between 
28o – 36o). When compared to the strength parameters used by Jibson et al. (2000) for the analysis 
of landslides from the 1994 Northridge earthquake (Figure 3.9c and Figure 3.9d), the values from 
this study are consistently smaller, about 10% smaller for 𝜙𝜙′ and significantly more for 𝑐𝑐′, 
particularly for Kss. This difference is due to the fact that Jibson et al. (2000) used elevated strength 
parameters to ensure slopes up to 60° were statically stable. Crystalline has been omitted in Figure 
3.9c and Figure 3.9d because there was no geologic formation to compare it with in Jibson et al. 
(2000). 
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Figure 3.9. Comparison between Southern California strength parameters from this study and 
those from SHZR (a) and (b), and comparison with Jibson et al. (2000) (c) and (d) 

As noted earlier, 𝑐𝑐′ and 𝜙𝜙′ work together to define the shear strength at a given confining pressure. 
Thus, additional insights about the relative strengths from different studies for each geologic unit 
can be obtained by computing the shear strength at different values of effective stress.  For 
Northern California, a confining pressure of 100 kPa, which represents the vertical effective stress 
at between 5 -10 m (depending on the location of the water table), was used to compute the 
strengths (Figure 3.10), while a confining pressure of 50 kPa was used for Southern California to 
represent a depth of between 2.5 - 5 m (Figure 3.11). 
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Figure 3.10. Comparison between shear strengths from this study and those from the Hayward 
fault scenario report by geologic units at a confining pressure of 100 kPa for Northern California 

Figure 3.10 shows that the strength values for Northern California from this study compare well 
with those from the Haywired report, with strengths generally increasing with geologic age with 
the exception of sp. Similarly, the strength values for Southern California from this study compares 
well with those from the SHZR and Jibson et al. (2000) with the exception of Kss (Figure 3.11). 
As stated earlier, strength parameters in Jibson et al. (2000) were elevated to ensure slopes were 
statically stable. 
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Figure 3.11. Comparison between computed shear strengths from this study and those from the 
SHZR and Jibson et al. (2000) by geologic units at a confining 50 kPa for Southern California. 
sp and KJf are not present in Southern California. 

 
 

3.4 Computation of Grid-Level Yield Accelerations  

3.4.1 Sliding Block Properties 

In addition to shear strength, the 𝑘𝑘𝑦𝑦 calculation also involves the slope angle, sliding mass 
thickness, groundwater table depth, and the soil unit weight.  The soil unit weight is assumed to 
be 18 kN/m3 across the entire region (Jibson et al. 2000, Dreyfus et al. 2013).  The assignment of 
the other sliding block properties is described below. 

A state-wide slope angle map was generated from the 10-m DEM, as shown in Figure 3.12. Slopes 
in California can be as steep as almost 80⁰ in mountainous terrain with slopes less than 10⁰ 
associated with alluvial fans and floodplains. Jibson and Michael (2009) reported that most 
landslides triggered by earthquake events are shallow in nature and occur on steeper slopes. Keefer 
(2013) reported 15⁰ as the minimum slope inclination characteristic of disrupted landslides caused 
by earthquakes and 5⁰ for landslides with minimal consequences. This study assessed seismic 
landslide displacements only on slopes with slopes greater than 10⁰.  

The thickness of the sliding mass was derived from professional judgment in consultation with 
landslide experts. Jibson et al. (2000) used a value of 2.4 m across the Northridge earthquake study 
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area in Southern California based on the observation that reported depths of the sliding plane of 
observed landslides from the Northridge earthquake event were relatively shallow. Personal 
communication with the landslide experts confirmed that the sliding mass thickness in Northern 
California is generally deeper than Southern California.  Based on these observations, three 
estimates of the sliding mass thickness were defined for each region: 1.5 m, 3 m and 4.5 m for 
Southern California and 5 m, 10 m and 15 m for Northern California.  

   
Figure 3.12. Slope angle map generated from 10-m DEM for California 

The depth of the groundwater was based on well observations. Figure 3.13 shows the spatial 
distribution of the depth to the groundwater table (GWT) from well data obtained from the 
California well database (GAMA, 2020) overlain on the geologic map. This study analyzed well 
data on slopes steeper than 5⁰, which is flatter than the 10⁰ threshold used for the landslide analysis. 
The reason to consider well data from flatter slopes is that there was little well data on steeper 
slopes and sufficient data was needed to define a range of groundwater levels. Well database was 
built to support construction and agriculture for irrigation which occurs mostly on flat grounds. 
The lack of well data in hilly terrain introduces uncertainty in the analysis; the uncertainty is 
considered through the logic tree. 
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Figure 3.13. Mean annual depth to groundwater table from well data (GAMA, 2020) 

Figure 3.14 shows the cumulative density functions of the groundwater depths from the well data 
for each geologic unit for Northern California (NoCal) and Southern California (SoCal). Most of 
the wells recorded shallow water depths less than 5 m for the sites considered (i.e., slopes > 5⁰), 
which is comparable to groundwater table depths in the San Francisco Bay area of 1.5 – 3 m 
(personal communication with local geotechnical engineer). For most places in Southern 
California, it is expected that the water table will be deeper than the modeled depth of the slip 
surface. Jibson et al. (2000) described most locations within the Northridge event area as arid, 
therefore the slopes were assumed to be dry for their analysis. The values in Figure 3.14 likely are 
not representative of the groundwater table depths at higher elevations and steeper slopes where 
landslides are expected. The values in Figure 3.14 are likely shallower than found in the hilly 
terrain, but without additional data it is difficult to evaluate different depths. Additionally, the 
wells do not account for the potential of a perched groundwater table, which will be present during 
rainy seasons. Therefore, we will use the well data in Figure 3.14 to assign groundwater table 
depth, acknowledging that the values may be conservative (i.e., shallower) for the dry season.  
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A summary of the number of wells and groundwater table depths assigned to each geologic unit is 
presented in Table 3.3. These values were taken from the cumulative density functions in Figure 
3.14 at probabilities of 0.25, 0.5, and 0.75. 

  
Figure 3.14. Distribution of groundwater table depth computed from California well database 
(GAMA, 2020) 



   
 

38 
 

The proportion of the sliding mass that is saturated (m), which is needed to compute 𝑘𝑘𝑦𝑦 (eqns 3.1 
and 3.2), is computed from the groundwater table depths (𝑔𝑔𝑤𝑤) and the sliding mass thickness (t) 
using:  

𝑚𝑚 = 1 − 𝑔𝑔𝑤𝑤
𝑡𝑡

     (3.3) 

The values of 𝑚𝑚  are limited to 0 ≤ 𝑚𝑚  ≤ 1, with 0 representing a dry slope and 1 representing a 
fully saturated slope. 

Table 3.3. Groundwater table depths assigned to different geologic units. 

 

*Values in black represent Northern California data while values in blue represent Southern California data. 

 

3.4.2 Logic tree for 𝒌𝒌𝒚𝒚 computation 

For the 𝑘𝑘𝑦𝑦 logic tree, the shear strength parameters (𝑐𝑐′ and 𝜙𝜙′) and the slope properties (t and m) 
are represented with three branches each, for a total of 81 branches (3 x 3 x 3 x3). For 𝑐𝑐′ and 𝜙𝜙′, 
the three branches represent low, best, and high estimates of the shear strength parameters. It is 
important to consider the correlation between 𝑐𝑐′ and 𝜙𝜙′ to avoid over or underestimating the shear 
strength. The correlation between 𝑐𝑐′ and 𝜙𝜙′ is taken into account through a conditional distribution 
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for ln 𝑐𝑐′, where the epsilon of ln 𝑐𝑐′ (𝜀𝜀ln 𝑐𝑐′)) is conditioned on the epsilon of 𝜙𝜙′ (𝜀𝜀𝜙𝜙′) and the 
correlation coefficient (𝜌𝜌ln 𝑐𝑐′,𝜙𝜙′) using: 

 

         (3.4) 

               (3.5) 

                      (3.6) 

 
The parameter 𝜌𝜌ln 𝑐𝑐′,𝜙𝜙′ reflects the degree of correlation between 𝑐𝑐′ and 𝜙𝜙′, and it influences both 
the conditional mean and conditional standard deviation of ln 𝑐𝑐′ (i.e., 𝜇𝜇ln 𝑐𝑐′|𝜀𝜀𝜙𝜙′  and 𝜎𝜎ln 𝑐𝑐′|𝜀𝜀𝜙𝜙′). If 
there is no correlation between 𝑐𝑐′ and 𝜙𝜙′ (i.e., when 𝜌𝜌ln 𝑐𝑐′,𝜙𝜙′ = 0), neither 𝜇𝜇ln 𝑐𝑐′|𝜀𝜀𝜙𝜙′  nor 𝜎𝜎ln 𝑐𝑐′|𝜀𝜀𝜙𝜙′  
change from their original values.  If there is perfect correlation (i.e., 𝜌𝜌ln 𝑐𝑐′,𝜙𝜙′ = 1), 𝜀𝜀ln 𝑐𝑐′ = 𝜀𝜀𝜙𝜙′ is 
used for 𝜇𝜇ln 𝑐𝑐′|𝜀𝜀𝜙𝜙′  and 𝜎𝜎ln 𝑐𝑐′|𝜀𝜀𝜙𝜙′  is equal to 0.  The correlation coefficient 𝜌𝜌ln 𝑐𝑐′,𝜙𝜙′ is assumed to be -
0.5 for this study, which results in 𝜎𝜎ln 𝑐𝑐′|𝜀𝜀𝜙𝜙′  =0.87 ∗ 𝜎𝜎ln 𝑐𝑐′.  

To assign values of 𝑐𝑐′ and 𝜙𝜙′ for the logic tree, three values of 𝜙𝜙′ are defined based on the 𝜇𝜇𝜙𝜙′ and 
𝜎𝜎𝜙𝜙′ for the geologic unit (Table 3.1) and 𝜀𝜀𝜙𝜙′ = -1.4, 0, and +1.4. These values of 𝜙𝜙′ are assigned 
weights of 0.248, 0.504, and 0.248 based on the 3-point distribution from Miller and Rice (1983).  
These values of 𝜀𝜀𝜙𝜙′ are used in eqns (3.4) – (3.6) to define the conditional distribution of ln 𝑐𝑐′ (i.e., 
𝜇𝜇ln 𝑐𝑐′|𝜀𝜀𝜙𝜙′  and 𝜎𝜎ln 𝑐𝑐′|𝜀𝜀𝜙𝜙′), and these values are used to define three values of ln 𝑐𝑐′ associated with 𝜀𝜀ln 𝑐𝑐′ 
= -1.4, 0, and +1.4.  Incorporating 𝜌𝜌ln 𝑐𝑐′,𝜙𝜙′ = -0.5 generates a smaller range of ln 𝑐𝑐′ than if the two 
parameters were uncorrelated. 

For the sliding mass thickness and groundwater table, the three values assigned to the logic tree 
are assigned weights of 0.248, 0.504, and 0.248.  Although in these cases we are not directly using 
the 3-pt distribution from Miller and Rice (1983), the same weights are used for consistency. 

Figure 3.15 displays the parameters in the logic tree for a single 10-m grid cell within the Tsh 
geologic unit in Northern California. The values assigned to the middle branches are the best 
estimates reported in Table 3.1 for 𝑐𝑐′ and 𝜙𝜙′ and Table 3.3 for 𝑚𝑚 . The 𝑘𝑘𝑦𝑦 computation, using Eqs. 
(1) and (2), follows all possible branches of input parameter combinations through the logic tree, 
producing 81 𝑘𝑘𝑦𝑦 values for each 10-m grid cell throughout the state. To ensure all slopes were 
statically stable, a minimum 𝐹𝐹𝑆𝑆  of 1.1 was applied to each grid cell where required. Dreyfus et 
al. (2013) followed a similar approach. In contrast, Jibson et al. (2000) increased the strength of 
the geologic units to ensure that all slopes up to 60 were statically stable. The weight of each of 
the 81 𝑘𝑘𝑦𝑦 branches is the product of all the weights along the contributing branches as in Eq. (3.7)  



   
 

40 
 

 
𝑤𝑤𝑘𝑘𝑘𝑘,𝑖𝑖 = 𝑤𝑤𝜙𝜙,𝑖𝑖 ∗ 𝑤𝑤𝑐𝑐,𝑖𝑖 ∗ 𝑤𝑤𝑡𝑡,𝑖𝑖 ∗ 𝑤𝑤𝑚𝑚,𝑖𝑖     (3.7) 

where 𝑤𝑤𝜙𝜙, 𝑤𝑤𝑐𝑐. 𝑤𝑤𝑡𝑡 and 𝑤𝑤𝑚𝑚 are the weights of 𝜙𝜙′, 𝑐𝑐′, 𝑡𝑡  and 𝑚𝑚  respectively.  

  
Figure 3.15. 𝑘𝑘𝑦𝑦 logic tree for geologic unit Tsh in Northern California 

The 𝑘𝑘𝑦𝑦 values and their corresponding weights are then combined and sorted to generate a 
cumulative density function (CDF) for each cell, as shown in Figure 3.16. The spread of the CDF 
denotes the degree of uncertainty in the values of  𝑘𝑘𝑦𝑦. For every increase in the number of branches 
within a logic tree, there is an associated increase in computational demand and efficiency to 
compute and store the 𝑘𝑘𝑦𝑦 values and then the displacements.  This issue is particularly significant 
for large-scale regional analysis.  Thus, it was important to limit the number of 𝑘𝑘𝑦𝑦 branches to a 
reasonable number before moving on to the displacement calculation. In this case, the 𝑘𝑘𝑦𝑦 values 
were re-sampled into a 7-point distribution using the approach described in Miller and Rice (1983). 
Here, specific values of the 7-point CDF are used to define the associated 𝑘𝑘𝑦𝑦 values and the weights 
defined by Miller and Rice (1983) are assigned to each value of 𝑘𝑘𝑦𝑦 . Figure 3.16 also shows the 
re-sampled 7-point distribution of 𝑘𝑘𝑦𝑦 derived from the specific CDF percentiles. The re-sampled 
𝑘𝑘𝑦𝑦 values and the associated weights, 𝑤𝑤𝑘𝑘𝑘𝑘 are then used to compute the displacements. Table 3.4 
presents the re-sampled 𝑘𝑘𝑦𝑦 values and weights for the plotted CDF in Figure 3.16.  
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Figure 3.16. Full 81 𝑘𝑘𝑦𝑦 distribution for one 10-m grid cell (green dots). Red dots show the 
resampled values using Miller and Rice (1983) 7-point approximation. 

Table 3.4. Re-sampled 𝑘𝑘𝑦𝑦 values and weights for displacement computation for one grid cell. 
CDF points and weights are from Miller and Rice (1983) 

 

 
3.5 Computation of Grid-Level Displacements  

3.5.1 Logic tree for displacement predictions 

In computing the seismic displacements, three empirical predictive models developed by Rathje 
and Saygili (2009) and Jibson (2007) were utilized. The models take the general form of 
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ln𝐷𝐷 =  𝑓𝑓𝑓𝑓𝑓𝑓�𝐼𝐼𝐼𝐼,  𝑘𝑘𝑦𝑦� + 𝜎𝜎ln𝐷𝐷    (3.8) 

where lnD is the natural logarithm of D in cm, IM is the vector of earthquake ground motion 
intensity measures (e.g., peak ground acceleration, PGA) and 𝜎𝜎ln𝐷𝐷 represents the aleatory 
variability or randomness in the predictive models. Two of the predictive models (Jibson, 2007; 
Rathje and Saygili, 2009) use a combination of earthquake magnitude (M) and PGA and each is 
given a weight of 0.3. The third model uses a combination of PGA and PGV (Rathje and Saygili, 
2009) and is given a weight of 0.4.  This larger weight reflects the belief that incorporating multiple 
ground motion intensity measures will produce more accurate predictions. 

The spatial distribution of ground motion intensity measures used in this study were generated by 
Wang et al. (2022), incorporating a scenario-based approach that includes spatial correlation. 
Given the spatial distribution of the IM, the seven re-sampled 𝑘𝑘𝑦𝑦 values combined with the three 
displacement models are used to compute 21 values of D and its standard deviation for each of the 
10-m grid cells within California, following the logic tree shown in Figure 3.17. All predicted 
displacements less than 0.1 cm are set to a value of 0.1 cm.  Cells with slope angle less than 10⁰ 
are not analyzed and are assigned null values. The weight of each of the 21 D branches is a product 
of the weights of 𝑘𝑘𝑦𝑦 and those of the displacement models along the contributing branches. 

 

 Figure 3.17. Displacement logic tree computed from 7 resampled 𝑘𝑘𝑦𝑦, ground motion intensity 
measures (M, PGA and PGV) and 3 displacement models. 

  



   
 

43 
 

3.5.2 Variability in the predictive displacement models 

To account for the aleatory variability in the predictive displacement models, we compute 𝜎𝜎ln𝐷𝐷 at 
the end of each displacement branch (Figure 3.17) and sample the distribution associated with 𝜎𝜎ln𝐷𝐷 
using a 5-point discrete approximation from Miller and Rice (1983).  This approach defines the 
probability distribution of the displacement at the end of each logic tree branch using 𝜇𝜇ln𝐷𝐷and 𝜎𝜎ln𝐷𝐷, 
and then samples the distribution using the 5 CDF values and associated weights defined by Miller 
and Rice (1983).  This expanded logic tree is shown in Figure 3.18.  Incorporating the model 
variability results in a total of 105 displacement values (7 𝑘𝑘𝑦𝑦 x 3 D models x 5-point approximation 
of 𝜎𝜎ln𝐷𝐷) per grid cell per ground motion scenario. The final CDF of displacement for an example 
cell for a ground motion scenario of M = 6.7, PGA = 0.82 g and PGV= 100 cm/s is displayed in 
Figure 3.19, with values ranging from 0.1 cm to about 600 cm.  The median displacement (𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 
from this CDF is used for subsequent analyses. 

 
 

  
Figure 3.18. Full displacement logic tree implemented to compute the displacement CDF for 
each grid cell. 
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Figure 3.19. Example of slope map and CDF of 105 displacement values computed for a grid 
cell. 

Figure 3.20 shows the CDF of 𝑘𝑘𝑦𝑦 and displacement across the full logic tree for three different 
cells. These three cells were shaken by a similar ground motion intensity (M = 6.7, PGA = 0.82 g, 
and PGV = 98 cm/s) but the 𝑘𝑘𝑦𝑦 distributions are different for each cell.  The cell with the smallest 
values of 𝑘𝑘𝑦𝑦 is associated with the largest displacements, and vice versa.  Because of the epistemic 
uncertainty in 𝑘𝑘𝑦𝑦, the epistemic uncertainty associated with the different predictive displacement 
models, and the aleatory variability associated with the displacement predictions, the variability in 
the displacement associated with the CDF is substantial. The variability is smaller for the large 𝑘𝑘𝑦𝑦 
cell due to many of the displacements being associated with little/no displacement, but the 
variability is larger for the smaller 𝑘𝑘𝑦𝑦 cell due to the large range of displacements predicted across 
the different values of 𝑘𝑘𝑦𝑦 from the logic tree.  
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Figure 3.20: (a) 𝑘𝑘𝑦𝑦 and (b) displacement CDFs for sample cells with small, medium and large 
displacement and M = 6.7, PGA = 0.82 g, and PGV = 98 cm/s). 

 

3.6 Defining Landslide Zones and Attributes 

3.6.1 Translating grid-level displacements into landslide zone polygons 

Here we describe the approach used to define landslide zone polygons and their attributes (i.e., 
location, size, displacement, and direction) from the outcome of the cell-by-cell calculation of 
sliding displacement from the logic tree. These landslide attributes can be used to assess the risk 
to overlying infrastructure, such as pipelines. The general procedure for defining the landslide zone 
polygons is summarized in the flowchart shown in Figure 3.21. Additionally, we provide details 
on how we generated the slope units and finally, we illustrate how we computed probability mass 
functions for landslide sizes, displacement magnitude and direction.  
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Figure 3.21. General procedure for defining landslide zone polygons and attributes 

To demonstrate the procedure for defining these landslide zones, we examine a small study area 
in the Santa Susana mountains, north of San Fernando Valley in Southern California covering an 
area of about 2 km2. Figure 3.22 shows the geologic map of the location of the study area which 
comprises mostly of Tertiary Sandstone, Tss. 

  
Figure 3.22. Geologic map of study area in the Santa Susana mountains, north of San 
Fernando Valley, Southern California 

As shown in Figure 3.231, the first step in defining landslide zone polygons is to generate a seismic 
landslide displacement map for each ground motion scenario using the median sliding 
displacement (𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚) obtained from the displacement CDF for each grid cell. For the study area 
shown in Figure 3.22, a single map of 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 was generated using the logic tree approach described 
above and PGA and PGV values from the USGS ShakeMap (USGS, 2020) for the 1994 M6.7 
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Northridge event. Figure 3.23a is an illustration of the resulting 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 for each grid cell of the study 
area. Clusters of 𝐷𝐷𝑚𝑚𝑒𝑒𝑒𝑒  that are susceptible to landslides are called landslide zones and these zones 
are created using a threshold on the median displacement, 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚,𝑡𝑡, equal to 5 cm.  

 

  Figure 3.23. (a) Map of median displacement generated from logic tree analysis (b) landslide 
zones created using 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚,𝑡𝑡 = 5 cm 

Common displacement thresholds that have been used to define landslides hazards in the literature 
are 5, 15 and 30 cm (Nichols et al., 1997, Jibson and Michael, 2009, Dreyfus et al., 2013, Detweiler 
and Wein, 2017). The thresholds adopted by the CGS for the Oat Mountain quadrangle seismic 
hazard zoning program and Jibson et al. (2000) are presented in Table 3.5.  This study uses 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚,𝑡𝑡 
= 5 cm to create the landslide zones (Figure 3.23b) because this value traditionally has been the 
threshold below which the landslide hazard is considered low/very low. The selected threshold 
delineates the zones of landslide susceptibility and a smaller 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚,𝑡𝑡 will result in a larger total 
predicted landslide area and vice versa. From Figure 3.23b it is clear that aggregating grid cells 
with D > 5 cm can generate large landslide zones and these landslides zones are unlikely to fail as 
one large failure. Therefore, additional constraints are used to define the potential landslide 
regions.   
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Table 3.5. Landslide hazard potential ranking assigned from sliding displacements 

 

To resolve this issue of large landslide zones, slope units were generated to identify slopes that 
will move together as a unit and these units were used to partition the large landslide clusters into 
smaller polygons that represent the geomorphology of the terrain. These slope units were produced 
from the 10-m resolution DEM using the r.slopeunits software developed by Alvioli et al. (2016, 
2020). The software is integrated into GRASS GIS and Python in a Linux environment. 
r.slopeunits takes the DEM and a number of user-defined parameters as the inputs and performs 
iterative functions using the r.watershed tool within GRASS GIS to create hydrological half-
basins. The user-defined parameters include initial flow accumulation threshold area (𝑡𝑡𝑓𝑓), 
minimum surface area (𝑎𝑎𝑠𝑠), circular variance (c), and cleansize area (𝑎𝑎𝑐𝑐𝑐𝑐). The parameters 𝑎𝑎𝑠𝑠 and 
c are the most important for slope unit partitioning because they control the size and direction of 
the resulting partitioned slope units. In this study, we used the following optimal parameters: 𝑡𝑡𝑓𝑓 = 
25,000 m2, 𝑎𝑎𝑠𝑠 = 1,000 m2, c = 0.3 and 𝑎𝑎𝑐𝑐𝑐𝑐 = 1,000 m2 based on our judgment of the resulting slope 
units.  The software returns a raster file with slope units, which are then post-processed into a 
vector file format for landslide area segmentation. 

Slope units generated in Southern California were more representative of the landforms when 
compared to Northern California. The topography of Northern California varies widely, including 
rugged coastal cliffs, dense forests, and high mountain ranges such as the Sierra Nevada and the 
Cascades. Southern California, on the other hand, is known for its deserts and beaches, as well as 
its many hills and mountains, including the Transverse Ranges and the Peninsular Ranges. Overall, 
Northern California tends to be more mountainous and forested, while Southern California is more 
arid and has more coastal and desert landscapes. 

Figure 3.24 shows the slope unit segmentation process for the small study area. Figure 3.24a is the 
slope unit polygons defined from the slope unit analysis. These slope units are used to segment the 
landslide zones into smaller landslide zone polygons (LZP) that reflect the geomorphology of the 
area. Figure 3.24b shows the slope units overlain on the large landslide zones, and Figure 3.24c 
shows the resulting segmented LZP.  
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Figure 3.24. (a) Slope unit polygons generated from DEM using r.slopeunits software (b) Slope 
unit polygons overlain on landslide zones (c) Resulting segmented landslide zone polygons. 

 

3.6.2 Distribution of landslide size 

Figure 3.25 shows an example slope unit polygon with identified landslide zone polygons (LZP) 
within them. The occurrence of a landslide bigger than the LZP is considered improbable but a 
landslide smaller than the LZP may occur anywhere within the polygon. It is also possible that 
multiple LZP can be present in a single slope unit (Figure 3.25b), and for this study these LZPs 
will be treated separately.  

  
Figure 3.25. (a) LZP embedded within a slope unit (b) multiple LZP within a single slope unit 
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Many of the LZPs are much larger than typical landslide sizes as compared with empirical 
distributions from previous regional landslide events (Malamud et al., 2004, Guzetti et al., 2005, 
Keefer, 2013). To account for the statistical distribution of potential landslides within a LZP, the 
sizes of the landslides are defined with the empirical probability distribution described in Malamud 
et al. (2004).   

Figure 3.26 shows the observed probability density of landslide areas for landslide inventories 
generated by the 1994 Northridge earthquake, the 1997 Umbria snowmelt, and the 1998 Hurricane 
Mitch rainfall events in Guatemala presented in Malamud et al. (2004). The plots follow an inverse 
Gamma distribution with a rollover at a landslide area of about 400 m2 and a power law distribution 
at the tails.   

  
Figure 3.26. Landslide area probability densities for three landslide events plotted in log scale 
(A) and linear scale (B) (Malamud et al, 2004) 

Malamud et al. (2004) developed a landslide area probability density function (PDF) for the 
observed landslide inventories as: 

  (3.9) 

where 𝐴𝐴𝐿𝐿 is the landslide area, 𝜌𝜌  is the parameter controlling power-law decay, 𝑎𝑎 controls the 
location of maximum probability, s controls the exponential rollover for small landslides, and Γ(ρ) 
is the gamma function.  Malamud et al. (2004) assumed that all landslide events should have the 
same mean landslide area and found that the parameters 𝜌𝜌  = 1.4, 𝑎𝑎 = 1.28 x 10-3 km2, and s = -
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1.32 x 10-4 km2 fit all three inventories. They decided that the landslide area PDF and associated 
parameters can be applied to other landslide-event inventories with minimal error because the 
distribution is independent of the number of landslides associated with an event.   

The landslide area PDF was used to identify the percentage of landslides expected in five different 
landslide area bins shown in Table 3.6.  These area bins represent ranges associated with pipeline 
fragility curves that define the damage to the pipe based on the length of the pipe subjected to 
movement. These landslides areas represent a square area associated with the pipe lengths 
associated with the fragility curves (i.e., 10, 50, 100, 200, and 500 m), and are computed as the 
square of the pipe lengths (10 m pile length is associated with 100 m2 landslide area).  A significant 
percentage (~ 77%) of landslides are associated with the 100 – 2,500 m2 area bin (10 to 50 m pipe 
length exposed), while the second largest bin is 2,500 – 10,000 m2 (50 to 100 m pile length 
exposed) with ~18%. For some of the LZPs in this study, the landslide areas were less than 100 
m2 (the size of one 10 m-grid cell) due to remnants from the slope unit delineation. These small 
landslide areas were not considered LZPs in this study.  

Table 3.6. Probability of different landslide area sizes from empirical distribution. 

 

The probabilities in Table 3.6 serve as the starting point for the estimation of our landslide size 
probability mass function (PMF).  However, because landslides cannot be larger than the LZP, the 
empirical distribution is truncated at the bin associated with the size of the LZP and normalized to 
achieve a total probability of 1.0.  This process is outlined in Figure 3.27. 
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Figure 3.27. Procedure for assigning the probability distribution to landslide size for a LZP 

Figure 3.28a shows an example of the truncated empirical distribution based on an LZP with a size 
of 7,500 m2.  This size of LZP results in truncating the last two area bins as listed in Table 3.6, 
which generates a slight increase in the probabilities associated with the smaller landslide area bins 
as shown in Figure 3.28b.  

 
 

 

Figure 3.28: (a) Empirical probability density function for landslide size truncated at size of 
landslide zone (b) Resulting PMF for landslide size. 
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3.6.3 Distribution of landslide movement 

In addition to the PMF for the landslide area, we estimate the PMF for displacement movement 
for each LZP using the 105 displacement values per grid cell computed for all grid cells within the 
LZP. First, the displacement distributions are aggregated across the grid cells to determine the 
combined CDF for the LZP. This aggregation is done by pooling all displacements for every cell 
within the LZP and applying their individual weights to compute the CDF. Figure 3.29 shows the 
combined CDF of displacements along with the CDF for individual cells for two different LZP.  
Figure 3.29a shows the displacements for a small LZP with five cells (LZP1), while Figure 3.29b 
shows displacement for a larger LZP with 220 cells (LZP2).   

  
Figure 3.29. Combined CDF of displacements from all cells for two example LZPs. (a) LZP1 
with five grid cells and (b) LZP2 with 220 grid cells. 

An important issue to address is the relationship between the displacements, D, computed by the 
sliding block analysis and the expected ground movements that may affect a pipeline.  
Traditionally, the sliding displacements have been used as an index of seismic performance, where 
larger D values are associated with a larger likelihood of a landslide and larger movements.  
However, the value of D is not directly equal to the movement in the field, yet the fragility 
functions for pipeline performance require estimates of movement associated with the landslide.  
The bins of movement for the pipeline fragility functions are listed in Table 3.7 and extend between 
0-30 cm and > 900 cm.  We consider the 0-30 cm movement bin to represent no/low landslide 
hazard and thus the probability of this bin is assigned the CDF for D = 5 cm (i.e., probability D < 
5 cm).  We consider the 30 - 150 cm bin to represent moderate movement and assign to it the 
probability for D = 5 – 30 cm.  The probabilities for D > 30 cm are more difficult to translate to 
landslide movements. Thus, the four largest bins of landslide movements are assigned probabilities 
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proportional to 𝐷𝐷−0.5, with the constraint that the sum of all of the probabilities for the four bins 
are equal to 1 – CDF (D = 30 cm).  This constraint ensures that the PMF for landslide movement 
sums to 1.0. 

Table 3.7. Approach used to assign PMF to landslide movement bins using CDF for sliding 
displacement 

 

Figure 3.30 shows the resulting PMF for landslide movement for the two LZPs referred to in Figure 
3.29. LZP1 has higher probabilities for the first two bins corresponding to low or moderate 
landslide hazard while LZP2 has higher probabilities in the last four bins corresponding to higher 
landslide hazards. This behavior supports the notion that smaller landslides are associated with 
low to moderate damage while large landslides are expected to cause more damage to structures.  

  
Figure 3.30. PMF of landslide movement for examples landslide zone polygons LZP1 and LZP2 
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3.6.4 Distribution of landslide movement direction 

The final attribute required of a landslide is its direction of movement, which is used in the pipeline 
fragility functions to define the direction of landslide movement relative to the alignment of the 
pipeline. The DEM can be used to define this information.  The slope angle represents the 
inclination of the face of the slope to the horizontal, while the slope aspect represents the direction 
the slope is facing, with North defined as 0°. The slope aspect gives an indication of the direction 
of the potential downward movement of the slope. Figure 3.31 is a map of the slope aspect for the 
small study area being considered in the Santa Susana mountains north of San Fernando Valley, 
which shows that the aspect can be quite variable over a study area. 

  
Figure 3.31. Aspect map overlain on elevation map for study area 

For each LZP, the slope aspect values are aggregated across the grid cells to compute the combined 
direction CDF for the LZP. This aggregation is done by pooling slope aspects for every cell within 
the LZP and assuming equal weights for all cells. The aspect values are then discretized into 5 bins 
to generate the PMF for landslide movement direction for angles between 0 to 360°. The PMF is 
completely driven by the slope aspect generated from the DEM within the LZP and the 
probabilities can vary substantially with direction. Figure 3.32 shows an example LZP within a 
slope unit where the arrows indicate the direction of movement for each cell.  
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Figure 3.32. Example of LZP within slope polygons showing slope aspect representing direction 
of movement for each grid cell 

Figure 3.33 shows the resulting PMF for the direction of landslide movement after aggregating the 
slope aspect for all cells within the LZP shown in Figure 3.32. As noted in Figure 3.33, the 
direction of movement for the LZP is very variable, but there is a high probability that the landslide 
will move in the SE downslope direction as most values fall within 120⁰ - 175⁰. 

  
Figure 3.33. PMF of landslide direction generated from aggregating slope aspect for each grid 
cell within an LZP 
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4                 Liquefaction Hazard  
In this section, we describe our logic tree-based approach to estimating liquefaction-induced 
ground deformations on a regional scale. We developed this approach to predict such deformations 
at any location in the state of California using, among others, methodologies developed for 
liquefaction susceptibility and triggering on a site-specific scale. The first portion of the logic tree 
focuses on inferring the subsurface conditions and water table depth based on regionally-available 
data and accounts for epistemic uncertainty arising from a lack of site-specific information. The 
second portion of the logic tree uses the inferred subsurface conditions to perform susceptibility, 
triggering, and deformation analysis using a suite of probabilistic models from the literature. 
Figure 4.1 provides a schematic description of the layers in the logic tree. 

 

Figure 4.1. Schematic description of the layers in the logic tree presented in this study. Each 
branch in each layer is assigned a weight, denoted as w. 

 

4.1   Epistemic Uncertainty 

4.1.1  Inference of Cone Penetration Test Results 

Available methods for liquefaction susceptibility, triggering, and deformation analysis use cone 
penetration test (CPT) results as inputs. The CPT data was non-uniformly distributed across the 
state (see Chapter 2), so we needed to develop a methodology for regional liquefaction 
displacement probabilities that was applicable to sites that did not have CPT measurements. We 
resolved this issue by using clustering to determine typical profiles from a database of CPTs 
divided by geologic unit; representing the typical profiles by means of CPT random fields; and 
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weighting the typical profile likelihood at each grid point based on the time-averaged shear wave 
velocity in the top 30 m (Vs30) (measured or calculated using proxy-based procedures) at a given 
location by means of maximum likelihood estimation.  

We begin with a database of CPT soundings in California that were collected by the USGS (2020) 
and a state geologic map (Wills et al, 2015). The location of available CPT soundings across the 
state of California and their availability within the various geologic units are described in Chapter 
2. We consider the following geologic units to be relevant to liquefaction risk analysis: quaternary 
(Holocene) alluvium for three slope categories (Qal1, Qal2, and Qal3); quaternary (Pleistocene) 
alluvium (Qoa); and artificial fill over intertidal mud (af/Qi). The CPTs for each relevant geologic 
unit are grouped using hierarchical clustering. The typical CPT profiles for that geologic unit are 
the mean qc and fs each of its clusters. Clustering is performed with the definition of the “distance” 
between CPT soundings 𝑖𝑖 and 𝑗𝑗 being the mean squared error between those CPTs’ 𝑞𝑞𝑐𝑐 and 𝑓𝑓𝑆𝑆 
profiles added together: 

      

Multinomial regression is then performed on the observed CPTs to estimate the probability of 
being it in a given cluster conditioned on Vs,30. Figure 4.2 depicts the clustering model for Qal1, 
namely the statistical distribution of CPTs belonging to one of the typical profiles within geologic 
unit Qal1 in Northern California (entry 3 in Table 1, NorCal). Figure 4.3 next plots the multinomial 
distribution for assigning weights as a function of Vs30 for typical profiles in NorCal1. 

Table 4.1. CPT groups we selected according to geologic unit and location. The table 
summarizes the well-represented units that were kept in our analyses.   
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(a) 

 

Figure 4.2. (a) Dendrogram showing the clustering of three typical profiles characterizing Qal1-
NorCal and (b) statistics of CPT measurements for tip resistance, qc (left) and sleeve friction, fs 
(right), representative of typical profile 1 of Qal1-NorCal.  

 
In each CPT cluster of each geologic unit, we determined the necessary parameters needed for 
random field representation of the CPT profiles. These include the trends in 𝑞𝑞c (tip resistance) and 
𝑓𝑓s (sleeve friction) with depth, namely the spatial autocorrelation in 𝑞𝑞c, the spatial autocorrelation 
in 𝑓𝑓s and the cross correlation between 𝑞𝑞c and 𝑓𝑓s as a function of depth. The random field 
representation of each typical profile was then used to draw representative CPT profiles within 
geologic units across the state. The conditional probability of each typical profile was based on 
estimating Vs30 for each CPT as follows: (i) using the geometric mean of Hegazy & Mayne (1995), 
Piratheepan (2002), and Mayne (2006); and successively (ii) using multinomial regression to get 
probabilities of each profile within a given unit as a function of Vs30.  The multinomial model for 
assigning weights to typical profiles in Qal1 as a function of Vs30 is shown in Figure 4.3. 
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Figure 4.3 Multinomial model plot for assigning weights to the three typical profiles characteristic 
of Qal1-NorCal shown in Figure 4.2, as a function of Vs30. 

 
4.1.2 Inference of the Water Table Depth  

In addition to the availability of CPT profiles, liquefaction analyses also require water table depth 
(wtd) to estimate the total and effective stresses. The second layer of the logic tree combines two 
estimates of wtd.   The first estimate comes from the well recordings described in Chapter 2 
(GAMA, 2020). We use only recordings made since January 1st, 2000, give greater weight to more 
recent recordings, and apply spatial interpolation (kriging) of the data to estimate the wtd at a given 
point. Because the well data are not evenly distributed across the state, we complemented the well 
wtd estimates with the global water table model by Fan et al (2013). This model can be applied 
globally and was previously used for regional liquefaction risk analysis by Zhu et al (2017). 

We next checked for consistency of the two estimates at the locations of the wells. For this, we 
defined the following variables: 

 

Further, we defined the depth to water table at a given well averaged over time, as the weighted 
average of observations made since 1999, namely:  

 

 

And finally, we defined the residuals of the two estimates in natural log units as follows: 
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The histogram of the residuals is shown in Figure 4.4. The figure shows that the well-based wtd is 
systematically deeper than the estimate of the global water model, and that it is highly variable.  

 

Figure 4.4. Histogram of residuals between the two wtd models, with mean 0.3 (factor of 1.35) 
and standard deviation 1.5 (factor of 4.5) 

 
We further explored the inconsistency between the two models, and observed the spatial trends 
depicted in Figure 4.5 In the figure, positive numbers indicate that the well-based wtd is deeper 
than expected, and negative numbers indicate that the well-based wtd is shallower than expected. 
We first explored the possibility that the difference could be explained by considering the geologic 
units of the well locations. However, there was no systematic bias that we observed for the geologic 
units that we considered to be susceptible to liquefaction.  

 

Figure 4.5. Systematic spatial trends of water table depth residuals between the wells and the 
global water table model in California 
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We then traced the systematic inconsistencies between wells-based and the global models to the 
land use, which is depicted in Figure 4.6 using data from the California Farmland Mapping and 
Monitoring Program. Dividing land use into three broad categories, Urban, Farmland and Other 
(see Table 4.2), we evaluated the mean and standard deviation of well depth residuals, and 
assigning land use across the state, we used the residuals to correct the global water model across 
the state.  

 

 

Figure 4.6. Distribution of land use from the California Farmland Mapping & Monitoring Program 

 

Table 4.2. Well depth residuals by land use category 

 

 
The estimates of the well-based and corrected global water model were assigned weights 
depending on the number of wells near a given location. Specifically, weights were assigned 
depending on the number of wells within one correlation length away from the grid point of 
interest. The semi- variogram derived from the well depth residuals that was used to estimate the 
correlation structure of the well spatial distribution is shown in Figure 4.7a below. Based on the 
semivariogram, the correlation length is 33 km. The weights that we implemented in the second 
layer of the logic tree are shown in Figure 4.7b. 
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(a) (b) 

Figure 4.7. (a) Semivariogram of spatial distribution of water wells; (b)  logic tree weights of the 
two wtd models (well-based and global) based on the number of wells within a correlation length 
from a given grid point 

 

4.2   Susceptibility, Triggering, and Deformation Analysis 
For any given CPT profile (i.e., any set of correlated qc and fs as functions of depth drawn from 
the random field CPT statistics described above) and a given wtd (estimated from the global model 
or evaluated on the basis of available well measurements), we perform susceptibility, triggering, 
and deformation analyses, which are reflected in the third, fourth, and fifth layers in the logic tree.  

Most criteria for soil liquefaction susceptibility are based on Atterberg limits, which we could not 
infer from CPT and they are not available regionally. Instead, we opted in using only models based 
on soil behavior index (Ic). Developing the relevant profile properties for each CPT-wtd leaf of 
the logic tree involves the following steps: 

• Calculate Ic. 
• Estimate fines content from the CPT (Robertson & Wride (1998), Idriss & Boulanger 

(2008) and Yi (2014)). 
• Calculate 𝑞𝑞𝑐𝑐1𝑁𝑁 and 𝑞𝑞𝑐𝑐1𝑁𝑁,𝑐𝑐𝑐𝑐. 

• Estimate median grain size from CPT (Douglas & Olsen, 1981) 
• Estimate 𝑁𝑁1 from 𝑞𝑞 (Kulhawy & Mayne (1990), Lunne et al. (2002), Robertson (2012)) 
• Calculate 𝑁𝑁1,60 and 𝑁𝑁1,60,𝑐𝑐𝑐𝑐 

Layer 3, the susceptibility layer of our logic tree, has five branches. On the first branch, the 
probability that the soil at a given depth is susceptible is 100% if Ic ≤ 2.6 and 0% otherwise, 
according to Robertson (2009). The probability of susceptibility on the remaining branches is 
determined using Maurer’s (2017) logistic models based on Ic, namely Polito (2001), Seed et al. 
(2003), Bray and Sancio (2006), Boulanger and Idriss (2006). The ensemble of 5 models used in 
our logic tree for liquefaction susceptibility are shown in Figure 4.8. 
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Figure 4.8. Liquefaction susceptibility of the five models implemented in our liquefaction logic 
tree as a function of the soil behavior index, Ic.  

Triggering analysis in layer 4 yields a factor of safety against liquefaction (FSliq) that is used as 
an input in deformation analysis. We apply three models for FS_liq (Robertson and Wride, 1998; 
Moss et al (2006); and Boulanger and Idriss (2016). Standard deviations of Moss et al (2006) and 
Boulanger and Idriss (2016) are 0.22 and 0.2 correspondingly. We assigned to Robertson and 
Wride (1998) the mean standard deviation of the two other models, namely 0.21.  

In layer 5, we applied three models for settlement-type deformations for each CPT-wtd leaf: Zhang 
et al (2002); Cetin et al (2009); and Juang et al (2013). Cetin et al (2009) has built-in uncertainty 
and the uncertainty of Juang et al (2013) is estimated on the basis of the uncertainty for Zhang et 
al (2002) with adjustments. We thus used the unadjusted uncertainty of  Juang et al (2013) for 
Zhang et al (2002). In layer 5, we also applied two models for lateral spread-type deformations, 
applicable for sites steeper than 1% slope: Youd et al (2002) and Zhang et al (2004). An example 
of the distribution of settlement and lateral spread for a site located on 2% slope, evaluated as a 
function of PGA and associated uncertainty is shown in Figure 4.9. 

(a) (b) 

Figure 4.9. Settlement and lateral spread distribution as a function of PGA estimated at a site in 
a geologic unit with 3 characteristic profiles.  
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We optimized computational efficiency by: (a) restricting implementation of the liquefaction logic 
tree to susceptible units across the state, namely to areas with potentially-susceptible geologic 
formations (Table 1) and shallow water table estimates (wtd < 10m); (b) precomputing branches 
of the logic tree on a fine grid of subsurface conditions, water table depth and intensity measures, 
and interpolating thereafter. Still, branch levels for subsurface conditions and water table depth 
from wells are not linearly related and require Monte Carlo simulations to obtain samples of 
representative profiles within geologic units and water table maps using kriging. On the other hand, 
these calculations are independent of intensity, and can be performed once and saved for use in 
any number of ground motion scenarios.  

Lastly, in its current form, the logic tree combines probability distribution functions (PDF) of 
probabilistic branches with probability mass functions (PMF) of deterministic branches. A more 
rigorous way to estimate uncertainty would be to treat the deterministic branches as samples, 
converting them into a single distribution using maximum likelihood estimation, and then 
combining them with the probabilistic branches. This task was considered outside the scope of this 
project. The flow chart in Figure 4.10 summarizes the development of tools and algorithms 
involved in the estimation of liquefaction displacement distributions, along with the steps where 
we drew models and methodologies from the literature. Finally, Figure 4.10 shows a schematic 
representation of the liquefaction displacement logic tree. 

 

Figure 4.10. Flow chart indicating the development of algorithms and methods involved in the 
liquefaction displacement estimation on a regional scale.  
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Figure 4.11. Schematic representation of the liquefaction ground displacement logic tree 
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4.3   Geospatial distribution of liquefaction manifestation 
The logic tree-based approach described above can yield similar estimates of displacement across 
large areas of consistent surface geology, water table depth, and ground motion intensity. Applying 
the logic tree across ground motion scenario maps may therefore overestimate the area that would 
be affected by liquefaction-induced displacements and provide features of unreasonably large size. 
Recently, Greenfield and Grant (2020) used Gaussian fields to map site-specific observations into 
3D independent random fields of groundwater depth, soil plasticity, and penetration resistance for 
different geologic units, and integrated the resulting models in a regional-scale probabilistic 
framework for liquefaction triggering. Still, their approach requires statistically significant site 
characterization data, which is rarely available on regional scales.  

On the opposite length scale end, geospatial proxies for liquefaction hazard (e.g., Zhu et al. (2015, 
2017), Rashidian and Baise (2020)) provide an alternative tool for regional liquefaction risk 
assessment that uses inputs available from remote sensing, such as the topography at a given 
location, to predict the probability that a specific location will be affected by liquefaction (Pliq ). 
Such proxies may still require inference of certain inputs or estimation using global models (e.g., 
wtd), but the uncertainty associated with these inferences is expected to be smaller than that 
associated with subsurface soil conditions. Pliq can be interpreted as the percent of the area covered 
by liquefaction (%Aliq ), as in the USGS ground failure product (Allstadt et al. (2021)). 

Applying site-specific procedures regionally by inferring subsurface conditions also gives Pliq , 
and can account for both variability around those procedures’ outputs as well as uncertainty 
associated with the inference of soil properties. Regardless of which of these two approaches 
(applying site-specific procedures with inferred inputs or applying a geospatial proxy with 
remotely available inputs) is used, both methods assign liquefaction and non-liquefaction 
randomly in a unit area, given the percent of the area covered by liquefaction (%Aliq ). 

To overcome this weakness in the state of practice, we developed an empirical procedure for 
creating maps of areas of liquefaction and non-liquefaction based on a latent Gaussian process. 
This procedure extends existing geospatial proxies to allow the assignment of liquefaction and 
non-liquefaction across regions while reflecting the spatial correlation structure observed in 
liquefaction manifestations in past earthquakes.  

4.3.1  Geospatial proxy for liquefaction 

Geospatial proxies such as Zhu et al (2015, 2017) are commonly used to analyze liquefaction risk 
on a regional scale. Zhu et al (2017) proposed separate models for use in coastal and non-coastal 
regions, where the coastal model is applied at sites less than 20 km from the coast. Both the coastal 
and non-coastal models apply as independent variables the time-averaged shear-wave velocity in 
the top 30 m at a given location (Vs30), the total annual precipitation at that location (precip), and 
the peak ground velocity at that location in a given earthquake (PGV). The coastal model also 
requires the distance from the location of interest to the nearest river (dr) and the distance from 
that location to the coast (dc). The non-coastal model instead uses wtd at the location of interest 
and the distance from that location to the nearest body of water (dw). 
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The Zhu et al (2017) models give the probability of liquefaction (Pliq) at the location of interest in 
a given earthquake as their output. These models interpret Pliq as being equivalent to %Aliq  based 
on the assumptions and procedure used in their development. However, there is no established way 
to assign the %Aliq in the literature: alternatives include assigning it randomly or assigning it as a 
continuous, single subarea (see Figure 4.12). Neither of these, however, incorporates a spatial 
correlation structure, which in turn has implications for the risk assessment of a distributed 
infrastructure in liquefaction-susceptible geologies. In this project, we developed a procedure to 
assign liquefaction to %Aliq of a grid cell using spatially correlated binary variables. 

 

Figure 4.12. Alternatives to assign %Aliq in unit grid cell: (a) Randomly assign liquefaction to 
%Aliq of grid cell; and (b) Assign liquefaction to %Aliq of grid cell in n continuous segments 

4.3.2  Liquefaction manifestation as a latent Gaussian process 

Gaussian processes are collections of random variables where each variable corresponds to a 
location and/or a point in time. Essentially, a Gaussian process is a random field where each 
variable has a normal distribution. The distribution of a Gaussian process is then the joint 
distribution of all those (essentially infinite) random variables, and as such, it is a distribution over 
functions with a continuous domain. 

Our methodology interprets the spatial distribution of surficial liquefaction manifestation as being 
governed by a latent (i.e., hidden) Gaussian process. In the context of latent variable modeling 
(see, e.g. Skrondal and Rabe-Hesketh (2007)), this Gaussian process is a hypothetical construct, 
meaning that it cannot be directly observed. Rather, we must measure it indirectly based on 
observations of liquefaction manifestation and our assumptions about its behavior. Describing a 
Gaussian process requires first obtaining a covariance function that describes the correlation 
among locations distributed in space. Formulating empirical semivariograms and fitting theoretical 
functions to the results is one approach to obtaining the covariance function. We here model the 
theoretical semivariogram using a nested exponential model after Markhvida et al. (2018), given 
by: 

   (4.1) 
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This functional form for the semivariogram allows us to model separate short- distance and long-
distance correlation structures, where the respective correlation lengths are ℓ1 and ℓ2. This feature 
allows the model to capture the influence of the size of individual manifestations (i.e., the scale of 
sand boils or clusters of sand boils) with ℓ1 and the influence of the size of liquefiable deposits 
with consistent properties with ℓ2. The relative importance of the short- and long-distance 
correlation is determined by c1 (the weight on the short-distance correlation). c2 is equal to 1 − c1 
such that the semivariance at large distances is equal to 1.00. 

Assume that we are observing a set of sites, s, where si is the ith site; we denote surficial 
manifestations at the sites as m, where mi=1 if there is liquefaction at si, and zero otherwise; and 
we denote the latent Gaussian process as Z and a given realization of Z as z(s), whose cumulative 
probability of being below a threshold is equivalent to a positive observation of liquefaction. Our 
goal is to define Z such that Equation (4.2) is true at all si: 

    (4.2) 

Liquefaction manifests at the surface at si (i.e., mi=1) if the inequality given by Equation 4.3 holds, 
where Φ(·) is the standard normal cumulative distribution function (CDF) and %Aliq,i is the portion 
of the area liquefied estimated at si : 

     (4.3) 

If the inequality in Equation 4.3 holds, Equation 4.2 is also true. This formulation assumes that the 
latent Gaussian process is stationary (i.e., we assume that Z is a standard normal variable at each 
location in s). Moreover, it assumes that Pliq at a given site in future earthquakes is equivalent to 
Pliq at many such sites in past earthquakes. This assumption is akin to the ”ergodic assumption” 
commonly made in ground motion prediction (e.g. Anderson and Brune (1999)).  

4.3.3 Empirical Data 

To estimate the correlation structure of the latent Gassian process, we used observations of surficial 
liquefaction manifestations in past earthquakes. Table 1 summarizes the data used. The data were 
collected from Schmitt et al. (2017), Zimmaro et al. (2020), and Geyin et al. (2020). The data from 
each earthquake detailed in Table 1 consist of the latitude and longitude coordinates of s, as well 
as mi for all si. The Fan et al. (2013) water table model and the Daly et al. (1997) precipitation 
model are used to estimate wtd and precip in all regions, respectively. Fan et al. (2013) is used 
even when post-earthquake CPT data includes water table estimates, so that wtd is consistent 
between the liquefaction (i.e., observed) and nonliquefaction (i.e., sampled) points in a given 
earthquake. Maps of PGV for all events are obtained from the ShakeMap Atlas (Allen et al., 2008). 
The Thompson et al. (2014), Ahdi et al. (2017), Foster et al. (2019), and Kwok et al. (2018) models 
for VS,30 are used for all locations in California, Washington, New Zealand, and Taiwan 
respectively. The Wald and Allen (2007) model for VS,30 is used in all other regions. 
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Table 4.3. Summary of the empirical data used in this study 

 

As shown in Table 4.3, there are limited instances of data from multiple earthquakes in the same 
region, with the exceptions of the Canterbury, New Zealand, and Puget Sound, Washington 
regions, each of which has three earthquakes in the database. Although there are five California 
earthquakes in the database, none affected the same region. 

For the purposes of this study, the completeness and balance of the datasets are important. We call 
a dataset complete if it includes all locations with liquefaction manifestations in the corresponding 
earthquake. We call a dataset balanced relative to %Aliq if the ratio of the number of liquefaction 
and non-liquefaction points aligns with %Aliq (e.g., if 4 out of 10 si in a dataset have mi =1 where 
%Aliq,i = 0.4 for all i). We calculated %Aliq,i using Zhu et al. (2017) for all sites in all earthquakes. 
Based on the calculated %Aliq,i, the databases in Table 1 are initially imbalanced relative to 
estimates of %Aliq for the corresponding earthquake. To remediate this, we sample non-
liquefaction points within the study area following an approach similar to that of Zhu et al. (2017). 
These points are located at least 20 m and at most 1,000 m away from existing liquefaction points. 
This strategy assumes that the field observations include all surficial liquefaction manifestations 
that were generated in the given earthquake (i.e., that the datasets are complete). Put differently, 
this approach assumes that, for the studies listed in Table 1, liquefaction manifested at the ground 
surface only at the reported liquefaction points, and that any randomly sampled point outside this 
set of points is a true non-liquefaction point. We are generally confident in this assumption based 
on experience with post-earthquake reconnaissance. 
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4.3.4 Empirical Approach to Characterizing the Latent Gaussian Process 

Let us now suppose that the latent Gaussian process for Z described above, exists. If Z were 
directly observable (i.e., if we could measure its value from past event data), the development of 
the geospatial model would have been straightforward. However, in this case, the available 
empirical dataset is binary (manifestation or no manifestation) and Z, which controls the 
manifestation of liquefaction, is hidden. For this reason, to develop the geospatial model for Z, we 
first perform a Monte Carlo simulation, generating multiple realizations that satisfy the 
underpinning assumptions (Equation 4.3) and that are consistent with the empirical dataset. 

Using the Monte Carol realizations, we then determined the spatial correlation structure of z(s). 
We formulated the empirical semivariogram of each z(s) and fit its theoretical semivariogram 
using nonlinear regression with Equation 4.2 as the functional form. Because z(s) has a standard 
normal distribution, the sill value of the empirical semivariograms is 1, and we assume that c1 + 
c2 = 1. Finally, because each z(s) is created using realizations of uniform random variables, we 
repeat this process 1,000 times for each earthquake using Monte Carlo simulation and analyze the 
pooled results. Each Monte Carlo simulation is consistent with the assumed behavior of the latent 
Gaussian process as well as with the %Aliq,i calculated using Zhu et al. (2017) at each site. 
Applying models in this framework derived from the empirical data in Table 1 to analyses of future 
earthquakes requires assuming some degree of ergodicity (i.e., that the z(s) obtained for past 
earthquakes reflect future earthquakes in those regions or elsewhere). 

4.3.5 Results 

Figure 4.13 shows the empirical and fitted nested exponential semivariograms for each earthquake 
in Table 4.3 grouped according to their regions. The results presented in Figure 4.13 and Table 4.4 
indicate that for most earthquakes, the overall correlation length of liquefaction manifestation (i.e., 
the h where γ(h) is approximately 0.95 and ρ(h) is below 0.05) is between 300 and 500 m. These 
results are consistent with estimates of the correlation length of indices such as the liquefaction 
potential index (LPI; Iwasaki et al. (1978); ℓ ∼500 m) and cone penetration test (CPT) cone 
resistance and sleeve friction (ℓ ∼300 m) per Wang et al. (2017). Figure 4.14 shows the fitted and 
empirical semivariograms for each earthquake together, along with those of the results pooled 
together according to region. 

The fitted and empirical semivariograms are similar for most earthquakes in the study. Two 
outliers (the 2001 Nisqually and 2015 Gorkha earthquakes) have longer correlation lengths of 800 
to 900 m. The databases of observations of liquefaction manifestations for these two earthquakes 
are small relative to many of the other earthquakes in the database, per Table 4.3. 
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Table 4.4. Parameters for the fitted semivariograms for each earthquake and region 

 

We should note here that the models presented above are developed without consideration of 
surficial geology. To examine the error introduced by this assumption, we repeat the analysis 
above for the earthquakes in California and restrict the non-liquefaction points to be sampled in 
geologic units containing quaternary alluvium or artificial fill over intertidal mud according to the 
Wills et al. (2015) geologic map (for all other geologic units, liquefaction is considered to be 
absent). The correlation lengths that we estimated conditioned on susceptible geology differ by 
10% or less compared to the original values. The distance restrictions placed on sampling the non-
liquefaction points (i.e., that they are between 20 m and 1,000 m away from the observed 
liquefaction points) may affect this result, and further investigation is needed to determine how 
the correlation structure of z(s) is affected by conditioning on geology, including separating the 
liquefaction manifestation length-scales for Quaternary alluvium and artificial fill, which in 
principle could be derived from densely-sampled observational data. In its current form, the model 
should be considered agnostic to the underlying geologic units. 
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Figure 4.13. Empirical and fitted semivariograms for earthquakes in (a) Washington, (b) 
California, (c) Canterbury, and (d) other global locations. 

 

Figure 4.14. (a) Fitted and (b) empirical semivariograms calculated for each earthquake, and for 
the earthquakes in each region pooled together. 

4.3.6 Model Implementation and Demonstration 

We here provide a concise summary of how the models presented in this paper can be applied, and 
we validate the outcomes of the method by comparing results of the simulation to observations 
from the 1989 Loma Prieta and 2001 Nisqually earthquakes. 
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Implementing the latent Gaussian process model to produce spatially correlated maps of the 
liquefied area in a past or future earthquake proceeds as follows: 

1.  Select the lateral extents of the region of interest. 

2.  Divide the region of interest into a grid with spacing at least one tenth of the liquefaction 
feature correlation length (~468m for the ensemble of California earthquakes analyzed). 

3.  Define s by locating the centroid of each differential element within the grid (for example 
square, rectangular, hexagon). 

4.  Estimate %Aliq,i for each si using a geospatial proxy (e.g. Zhu et al. (2017)) or inference based 
on geology (e.g., Youd and Perkins (1978)). 

5.  Assemble a matrix, h, where hij is the distance separating locations si and sj in m. 

6.  Construct the covariance matrix for a standard normal random field, ẑ(s) using Equation 4.1 
and the appropriate coefficients from Table 4.4 for the region of interest. 

7.  Generate the desired number of realizations of ẑ(s). 

8.  For each realization, assign liquefaction to those grid polygons where Φ(ẑ(si)) ≤ %Aliq,i 
(Equation 4.3). 

Case Studies 

This section applies the latent Gaussian process model to develop maps of the liquefied area in 
Seattle, WA, in the 2001 Nisqually earthquake and San Francisco and Monterey Bay, CA, in the 
1989 Loma Prieta earthquake. For all cases, we use a hexagonal grid at 100 m spacing (roughly 
1/4 of ℓ1 for these regions). Figure 4.15 shows maps of PGV for these case studies as obtained 
from ShakeMaps and Figure 4.16 shows maps of %Aliq for these case studies as derived from the 
Zhu et al. (2017) model. Figures 4.17 and 4.18 show maps of ẑ(s) for these case studies including 
and excluding spatial correlation, respectively. Per Equation 4.3, low (negative) and high (positive) 
values of ẑ(s) are relatively likely and unlikely, respectively, to be liquefaction locations, 
depending on the values of %Aliq,i . The coefficients from Table 4.4 for Washington are used for 
Seattle and those for California are used for San Francisco and Monterey Bay.  

It should be noted that the realizations of ẑ(s) with and without spatial correlation (Figures 4.17 
and 4.18 correspondingly) are operators that translate the percent area liquefied (%Aliq,i ) maps 
into spatially correlated maps and uncorrelated maps (Figures 4.19 and 4.20 correspondingly) of 
the liquefied area, and as such have no physical meaning. 

Next, Figures 4.19 and 4.20 show maps of the liquefied area corresponding to the ẑ(s) fields from 
Figures 4.17 and 4.18. Qualitatively, we see that the density of liquefaction observations in both 
the correlated and uncorrelated maps (Figures 4.19 and 4.20) reflects the spatial distribution of the 
%Aliq predictions. Furthermore, the predictions of %Aliq reflect the different geologic conditions 
(e.g. Treasure Island is a hydraulic fill, and Yerba Buena island is a rock outcrop). In the 
uncorrelated maps the liquefaction points do not tend to form continuous polygons corresponding 
to liquefaction features such as lateral spreads. However, such features are obtained by application 
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of the spatial correlation model, which produces the correlated map (Figure 4.19) that has clearer 
distinctions between areas of  liquefaction and nonliquefaction. 

Figure 4.15. Peak ground velocity maps for (a) Seattle in the 2001 Nisqually earthquake, (b) San 
Francisco and Oakland in the 1989 Loma Prieta earthquake, and (c) Monterey Bay in the 1989 
Loma Prieta earthquake. 

Figure 4.16. Percent area liquefied (%Aliq,i ) maps for (a) Seattle in the 2001 Nisqually earthquake, 
(b) San Francisco and Oakland in the 1989 Loma Prieta earthquake, and (c) Monterey Bay in the 
1989 Loma Prieta earthquake. %Aliq,i calculated using Zhu et al. (2017).  
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Figure 4.17. Spatially correlated standard normal random field maps, depicting field value (ẑ(s)) 
for (a) Seattle in the 2001 Nisqually earthquake, (b) San Francisco and Oakland in the 1989 Loma 
Prieta earthquake, and (c) Monterey Bay in the 1989 Loma Prieta earthquake. 

Figure 4.18. Uncorrelated standard normal random field maps, depicting field value (ẑ(s)) for (a) 
Seattle in the 2001 Nisqually earthquake, (b) San Francisco and Oakland in the 1989 Loma Prieta 
earthquake, and (c) Monterey Bay in the 1989 Loma Prieta earthquake. 
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Figure 4.19 Spatially correlated maps of the liquefied area for (a) Seattle in the 2001 Nisqually 
earthquake, (b) San Francisco and Oakland in the 1989 Loma Prieta earthquake, and © Monterey 
Bay in the 1989 Loma Prieta earthquake. 

Figure 4.20. Uncorrelated maps of the liquefied area for (a) Seattle in the 2001 Nisqually 
earthquake, (b) San Francisco and Oakland in the 1989 Loma Prieta earthquake, and (c) 
Monterey Bay in the 1989 Loma Prieta earthquake. 

We can obtain a suite of maps like those in Figure 4.19 for each region by generating multiple 
realizations of ẑ(s) in Monte Carlo simulation. Each map can be used to evaluate performance 
metrics of interest (e.g. disruption of an infrastructure system), the results of which can then be 
aggregated across the map suite to evaluate probabilities (e.g., probability of failure of an 
infrastructure system). To verify that the Gaussian process accurately captures the predictions of 
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%Aliq from the geospatial model, Figure 4.21 shows the simulated %Aliq (i.e., the area of cells 
marked as ”liquefied areas” in Figures 4.19 and 4.20 divided by the total area) binned according 
to the predicted %Aliq (i.e., Figure 4.16). Results from 10 random field realizations are shown for 
both approaches. Either approach generates maps of the liquefied area that are consistent with 
%Aliq . Across a sufficiently large number of realizations, the true positive rate at sites with 
manifestations is equal to %Aliq,i at those sites, as dictated by Equation 4.3. The false positive rate 
at sites without manifestations is likewise equal to %Aliq,i at those sites. These identities are true 
for the implementations with and without spatial correlation. However, the case including spatial 
correlation is more likely to correctly identify clusters of sites with manifestations. Figure 4.22 
shows the true positive rate conditioned on a nearby true positive (that is, how likely it is for the 
model under evaluation to have correctly predicted that a site has truly liquefied given that a nearby 
site has also liquefied) for the cases with and without spatial correlation for 1,000 realizations of 
the Monterey Bay and Puget Sound study areas. These areas are used for this analysis because they 
include more observations (46 and 37 points, compared to 16 in the San Francisco and Oakland 
study area). The conditional true positive rate is much higher at short distances when including 
spatial correlation. In the case without correlation, predictions at each site are independent, and the 
true positive rate is %Aliq,i regardless of whether a site with a true positive is located nearby. 

 

Figure 4.21. Comparison of the predicted and simulated %Aliq values for 10 random field 
realizations for each case study area for (a) the case including spatial correlation and (b) the 
uncorrelated case. 
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Figure 4.22. The true positive rate for sites in the (a) Monterey Bay and (b) Puget Sound case 
study areas conditioned on a true positive within a threshold separating distance. 

We next demonstrate the use of the method for a region in Southern California, where observations 
of liquefaction were available from the 1994 Northridge M6.7 reconnaissance. Figures 4.23-4.29 
show sequence of input parameters, from the geology and ground motion distribution to the 
estimated settlement and lateral spreading prior and after the application of the Gaussian process 
model.  

 (a) 

Figure 4.23. (cont) 
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(b) (c) 

Figure 4.23. Study area affected by 1994 M6.7 Northridge earthquake: (a) location on the map 
along with observations of liquefaction (red dots); (b) geologic index of the study area; and (c ) 
Shakemap PGA of the event, used for triggering and displacement evaluation 

 
Figure 4.24. Mean and standard deviation of settlement estimation in study area 

Figure 4.25. Slope, mean and standard deviation of lateral spread estimation in study area 
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Figure 4.26. Vs30 and resulting %Aliq from the geospatial model by Zhu et al (2017) 

 

Figure 4.27. Two realizations of %Aliq into liquefaction manifestation through the gaussian 
process model: liquefaction is assigned to points where the standard normal cumulative 
distribution function (CDF) of z at site i falls below %Aliq at that site.  

 

Figure 4.28. Zoom-in one realization of liquefaction manifestation, revealing among others, two 
features (grid cells connected to in a continuous formation) 
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Figure 4.29 Individual and aggregate settlement probabilities for each feature in Figure 4.28.  

4.3.7 Geological vs Geospatial Approaches for Feature Mapping 

The Zhu et al., 2017 geospatial liquefaction model used in this work to map the spatial extent of 
liquefaction, uses globally available geospatial explanatory variables that are proxies for soil 
density, soil saturation and dynamic loading. The models were developed using logistic regression. 
Zhu et al. (2017) also proposed a logistic function to translate the liquefaction probability to an 
estimate of the liquefaction spatial extent (%Aliq), which, as we saw above, allows the resulting 
map to provide an estimate of the fractional area of liquefaction within a pixel/polygon, and can 
be more directly compared with ground observations of liquefaction. 

An alternative approach to map probability of liquefaction is to use decision thresholds central to 
the use of liquefaction hazard frameworks, such as the liquefaction severity number (LSN). The 
severity of soil liquefaction manifested at the ground surface serves as a practical proxy for 
liquefaction damage potential, particularly for pavement systems, buried lifelines, structures on 
shallow foundations, and other near-surface infrastructure; by way of this simplifying proxy, 
hazard frameworks have been proposed to link the factor of safety against liquefaction triggering 
at depth (FSliq) to damage potential. Iwasaki et al. (1978) proposed the first such framework: the 
liquefaction potential index (LPI), which has been used to assess liquefaction hazards worldwide. 

Though widely adopted, evaluations of LPI following recent liquefaction events, such as the 2010-
2011 Canterbury Earthquake Sequence (CES), show that it performs inconsistently (e.g., Maurer 
et al., 2014). This inconsistency inspired the development of new hazard frameworks, among 
which the liquefaction severity number (LSN) (van Ballegooy et al., 2014a), a variation of 1- 
dimensional post-liquefaction reconsolidation settlement (e.g., Zhang et al., 2002). Central to all 
of these hazard frameworks are proposed decision thresholds corresponding to different levels of 
expected hazard. For example, Iwasaki (1986) proposed that liquefaction hazard is “low” at sites 
where LPI ≤ 5, “high” where 5 < LPI ≤ 15, and “very high” where LPI > 15. Similarly, Tonkin 
and Taylor (2013) proposed that little to no manifestation of liquefaction is expected at sites where 
LSN < 20; moderate to severe manifestation of liquefaction is expected where 20 < LSN < 40; and 
major manifestation of liquefaction is expected where LSN > 40. Thus, an LPI of 5 and an LSN 
of 20 correspond to similar levels of expected hazard.  
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In this section, we compare the extent of liquefaction evaluated through frameworks based on LPI 
and LSN to the %Aliq estimated using the Zhu et al (2017) model, along with realizations of  areas 
of liquefaction manifestation using the Gaussian Process model described above. The comparative 
study starts with analyzing all CPTs for each geologic unit to obtain geotechnical indices, namely: 

 or       (4.4)
  

 

Figure 4.30. CPT realizations within the geologic unit artificial fill over bay mud analyzed in this 
study, translate into LPI vs. PGA distributions.  

Next, for a given index threshold, we calculate the probability of exceedance for a given unit 
(e.g. the geologic unit in Figure 4.30) as follows: 

       (4.5) 

 

Figure 4.31. Example of probability of exceedance of liquefaction potential index LPI > 5, for the 
geologic unit of Figure 4.30 as a function of PGA 
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The input parameters required in each approach (geologic vs geospatial) for the 1989 Loma Prieta 
Earthquake are shown in Figure 4.32.  Specifically, the geology-based probability is based on 
PGA, geologic unit and wtd; whereas the geospatial model probability is based on PGV, Vs30 and 
wtd.   

(a) 

(b) 

(c) 
Figure 4.32. Input parameters required in (a) the geologic and (b) the geospatial approach for the 
1989 Loma Prieta Earthquake scenario. The water table depth shown in (c) is an input in both 
approaches. 
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Results for the 1989 Loma Prieta scenario are compared in Figure 4.33. As can be seen, the 
geospatial model on the left yields more granularity in probability distribution of the Bay Area. 
Interestingly, although Treasure Island is estimated to have a Pliq > 50% with all approaches, only 
the geospatial model yields Pliq for Yerba Buena Island equal to zero (i.e. consistent with the 
observations). The percent difference between the geospatial and each of the geologic models in 
terms of %Aliq is depicted in Figure 4.34. Lastly, Figure 4.35 shows the implementation of the 
latent Gaussian model for liquefaction manifestation applied in each of the three variants of Aliq 
shown in Figure 4.33. 

While the geospatial model yields more realistic distribution of liquefaction manifestation 
compared to the geology-based susceptibility indices, what is important here is that the spatial 
correlation model is agnostic to the underlying approach of estimating Pliq on a regional scale, and 
can thus be applied so long as the uncertainty associated with the Pliq estimation is of order 
comparable to that of the geospatial model by Zhu et al (2017) used in this work.   

Figure 4.33. Probability of liquefaction estimated using the geospatial (left), the geologic model 
with threshold LPI>5 (middle), and the geologic model with threshold LSN >15 (right) 

 

Figure 4.34 Difference in %Aliq between Zhu et al (2017) geospatial model and the two geologic 
models based on LPI and LSN thresholds.  
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Figure 4.35. Liquefaction manifestation realizations with and without spatial correlation, using 
the three alternative models to map the %Aliq during the 1989 Loma Prieta earthquake. 

4.4 Sensitivity Analysis of Logic Tree 
In this section, we evaluate the sensitivity of our liquefaction hazard logic tree. We demonstrate 
the sensitivity analysis at a site on flat quaternary alluvium in San Jose. We then formulate all 
logic tree branches (levels 1-5) and define their residual relative to the total mean: 

  (4.6) 

where i is the mean of the distribution for each branch, and μ is the total mean of the logic tree 
distribution. Then, each branch has a residual given by: 

  (4.7) 

Next, we use mixed effects regression to separate the individual branch contributions to the 
variance of means. We specifically break down the residuals into components for the typical 
profile, the CPT profile realization, the water table and water table realization (in well-maps 
kriging), the susceptibility model, the triggering model, the triggering model realization, and the 
deformation model: 
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 (4.8) 

We repeat the process separately for settlement and lateral spread. Results are depicted in 
Figures 4.36-4.42. In each case, we evaluated the contribution of the individual models to the 
total variance as . 

 
Figure 4.36 Sensitivity of variance to intensity (settlement) 

 

               
Figure 4.37 Sensitivity of variance to intensity (lateral spread) 

Adding uncertainty to the wtd models increased the corresponding variance components, but the 
overall uncertainty is small relative to the contribution of triggering and deformation: 
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Figure 4.38 Contribution of uncertainty of the wtd models to the total variance of the logic tree 
for settlement (left) and lateral spread (right). 

Our analyses showed that the settlement models have extreme log variance at low intensities (i.e., 
10-6 m and 10-4 m have small absolute difference, large log difference). Rather than reporting log 
variance at low intensities, we assumed that if our analysis yields that liquefaction was triggered, 
then S >10-3 m. 

 
Figure 4.39 Sensitivity of variance to intensity for a given geologic unit 
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Figure 4.40 Sensitivity of total standard deviation to intensity across four geologic units 

 

 

 
Figure 4.41 Pie charts of contribution to total standard deviation across all susceptible geologic 
units for low intensity motion (PGA = 0.09g) 
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Figure 4.42 Pie charts of contribution to total standard deviation across all susceptible geologic 
units for high intensity motion (PGA = 0.97g) 

 

4.5 Summary  
We developed and presented a regional methodology for estimating liquefaction-induced ground 
failure deformations and assigning them spatially. The uncertainty around regional estimates of 
deformations remains high compared to site-specific estimates, but the approach described herein 
allows rapid application of liquefaction risk analysis procedures without extensive site-specific 
data. The methodology uses a logic tree to represent uncertainty in subsurface conditions as well 
as liquefaction susceptibility, triggering, and deformations. Two features of this approach act to 
reduce overestimation of liquefaction risk. First, the logic tree yields a probability mass at zero 
displacement, meaning that even areas affected by liquefaction may experience zero deformations. 
Second, a spatial model for distribution liquefaction was applied, which reduces the total area over 
which deformations are estimated. 
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5                 Presentation of Results  
The distributions of geo-hazards (i.e., landslides and liquefaction features) were assessed using 
the procedures described in Chapters 3 and 4 for the 25 earthquake scenarios described in Wang 
et al. (2023). This chapter has two aims: (1) provide example landslide and liquefaction results 
for a single earthquake scenario and mapped region and (2) describe the format of the results that 
were provided for risk calculations.  

5.1   Example Results 

The earthquake scenario for which example results are provided is No. 5 in Wang et al. (2023). It 
is an M = 8.0 event that involves rupture of the Ft. Tejon segment of the San Andreas Fault and 
the Garlock Fault, as shown in Figure 5.1. The area for which geo-hazards results are illustrated 
for this scenario is shown in Figure 5.2, which is located just south of the fault segment intersection 
and covers an area of about 3,920 km2 (approx. 39.2 million grid cells). The geologic map (top 
right) highlights the young alluvium units considered for liquefaction assessments and the older 
geologic units considered for landslide assessments. The slope map (bottom right) has a spatial 
resolution of 10 m with slope angles ranging from 0° to 82°.  Figure 5.3 shows a subregion map 
to illustrate the controlling ground motions considered for this scenario in the geo-hazards study 
area. The contour maps show values of PGA up to 1.6 g and PGV up to 170 cm/s for this 
earthquake magnitude of M = 8.0. 
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Figure 5.1. Rupture segment for Scenario 5.  

 

 
Figure 5.2. Region for which geo-hazards results are illustrated. Left – vicinity map, top right – 
subregion geology map, bottom right – subregion slope map.  
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Figure 5.3. Earthquake ground motions, PGA (g) and PGV (cm/s), from scenario No. 5 for the 
landslide analysis including   

Figure 5.4 shows the resulting landslide displacements computed for individual 10-m cells, as 
described in Chapter 3, and Figure 5.5 displays the resulting segmented landslide zone polygons. 
We examine the density of landslide zone polygons for two subregions (Zones 1 and 2) that are 
predominantly associated with the crystalline and Tss geologic units. Zone 1 shows a higher 
density of landslide zone polygons than Zone 2 even though the slopes in Zone 2 appear to be 
steeper. This result is due to the ground motion intensity being relatively larger in Zone 1 compared 
to Zone 2 (Figure 5.3). 
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Figure 5.4.  Cell-based landslide displacement results for earthquake scenario No. 5. 
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Figure 5.5. Map of segmented landslide zone polygons highlighting spatial distribution of 
predicted landslides 

 

Figure 5.6 presents the regions susceptible to liquefaction as determined from the surficial 
geological units. In this example, the susceptible units include young quaternary alluvium (Qal1, 
Qal2, Qal3, Qoa, and Qi) and artificial fill (af) units. Figure 5.7 shows the mean displacements 
induced by liquefaction and Figure 5.8 shows the primary mechanism. Overall, in regions where 
volumetric settlements is the primary mechanism, the mean displacements range from 0.0 to 0.5 
meters while in the regions where lateral spread is the dominant mechanism, the mean 
displacement range from 0.5 to 6.0 meters. The dominant mechanism is primarily controlled by 
the slope angle, in this example the threshold between lateral spread and volumetric settlements 
occurs at around 0.20 degrees.   
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Figure 5.6. Map of liquefiable and non-liquefiable zones based on geology 
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Figure 5.7. Map of mean liquefaction mean displacement results for earthquake scenario No. 5 
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Figure 5.8. Map of zones affected by liquefaction induced settlements versus lateral spread for 
earthquake scenario No. 5 

 

5.2   Format of Results Provided for Risk Analysis 

The final outputs of both the landslide and liquefaction analyses are presented in tabular format 
compatible with pipeline fragility models.  

For the landslide analysis, each generated landslide zone polygon is assigned a unique landslide 
zone ID and discretized at 10-m grid level to allow for integration with the location of the pipelines. 
Table 5.1 shows an example of the unique IDs of six landslide zone polygons and the geospatial 
references (latitude and longitude) of the center of each grid associated with the landslide zone 
polygon. The probability mass functions for discrete bins of pipeline exposure length, direction of 
movement, and amount of movement are tabulated for each landslide zone polygon, as shown in 
Table 5.2, using the unique ID as a cross reference. The 5 bins for pipeline exposure length are 10, 
50, 100, 200, and 500 m, the 72 bins for direction are 5° intervals between 0° and 360°, and the 5 
bins for landslide movement are 0 - 30, 150 - 300, 300 - 600, 600 - 900, and > 900 cm. 
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Table 5.1. Locations of landslide zone polygons discretized into 10-m grids 
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Table 5.2. Landslide zone polygons and probability mass functions of pipeline exposure length, 
landslide direction and amount of movement. 
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6                 Limitations  
In this report, an analysis framework is presented for the estimation of spatially distributed seismic 
ground failure hazards, consisting of features having particular sizes, as well as amounts and 
directions of displacement. The framework uses readily available geo-spatial information, and as 
such can be used without site-specific geotechnical data, which is essential for practical application 
at a large, regional scale. Uncertainties in the presence of these features and the amounts of 
displacement are evaluated using a logic tree framework in which parametric and modeling 
uncertainties are considered.  

The work presented here has many substantial innovations, but also limitations that could be 
overcome with additional research. Some of these limitations are:  

1. A limited number of scenario earthquake events was considered, meaning that that 
scenarios have large magnitudes that are not very representative of hazard controlling 
conditions at most locations.  

2. The shear strength parameters for landslide analysis have not been validated with respect 
to the levels of landslide risk they provide. Future work could validate, and as needed 
calibrate, these parameters using seismic or non-seismic case history data.  

3. The point-based liquefaction modelling approach using CPT data to predict liquefaction 
susceptibility and triggering could be validated using spatial observations from past 
earthquakes where such information is available from post-event reconnaissance. Such 
work would be useful to evaluate the percentage of an area that is indicated as liquefiable 
is realistic and if the clustering algorithm is effective in different geological environments.  

4. The products provided to the risk team are derived based on general data sources (from 
Chapter 2) that are available statewide. Modularity in the output is not yet provided, 
whereby results of site-specific studies could be implemented. Longterm, this should be 
enabled, so that higher-resolution site-specific information can be utilized to reduce 
uncertainties. 
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