Cal Poly

Caltech

UC Irvine

UCLA

UC Santa Barbara

USC

Directivity-Based Probabilistic Seismic Hazard Analysis for the State of California: Report 3, Datasets & Tools

Silvia Mazzoni, PhD

Natural Hazards Risk and Resiliency Research Center, University of California, Los Angeles

> Linda Al Atik, PhD Linda Alatik Consulting, San Francisco

> > **Nick Gregor, PhD** Gregor Consulting, Oakland

Yousef Bozorgnia, PhD ural Hazards Risk and Resiliency Research Cer

Natural Hazards Risk and Resiliency Research Center, University of California, Los Angeles

A report on research conducted with support from the California Energy Commission, Pacific Gas & Electric Company and California Department of Transportation

Report GIRS-2023-06

DOI: 10.34948/N3G01Q

University of California, Los Angeles (headquarters)

March 2023

Natural Hazards Risk & Resiliency Research Center

B. John Institute for the Risk Sciences

Directivity-Based Probabilistic Seismic Hazard Analysis for the State of California: Report 3, Datasets & Tools

Silvia Mazzoni, PhD

Natural Hazards Risk and Resiliency Research Center, University of California, Los Angeles

Linda Al Atik, PhD

Linda Alatik Consulting, San Francisco

Nick Gregor, PhD

Gregor Consulting, Oakland

Yousef Bozorgnia, PhD

Natural Hazards Risk and Resiliency Research Center, University of California, Los Angeles

A report on research conducted with support from the California Energy Commission, Pacific Gas & Electric Company and California Department of Transportation

> Report GIRS-2023-06 DOI: 10.34948/N3G01Q

Natural Hazards Risk and Resiliency Research Center B. John Garrick Institute for the Risk Sciences University of California, Los Angeles (Headquarters)

September 2023

ABSTRACT

An independent state-wide probabilistic seismic hazard analysis (PSHA) was conducted for California including, for the first-time, the directivity effects of ground motions. This PSHA study and the resulting mean hazard curves, ground motions, and deaggregation results are input for the larger seismic risk analysis and resiliency study conducted for the natural gas infrastructure system including transmission lines and storage facilities throughout the state of California.

A total of 19,316 sites based on a grid spacing of 0.05 by 0.05 degrees longitude and latitude were used in the seismic hazard analysis. At each site location, PSHA was conducted for multiple Vs30 values including the site-specific Vs30 value estimated from three-dimensional velocity structure maps in California. Hazard results are also provided for site-specific estimates of basin depth parameters where these estimates are deemed reliable.

This report is the third in a series of three reports on documentation of the directivity-based statewide PSHA study for California. The first report (Al Atik, et al, 2022) described the input seismic source and ground motion models. The second report (Al Atik, et al, 2023) described the implementation of *near-field directivity effects* on the ground motion for the state-wide hazard study. This third report describes the data collected and processed from the hazard analysis and development of a user-interactive web tools, which allow the user to generate hazard results with and without directivity effects at any location in California and for any Vs30 site condition between 180 and 1,100 m/sec.

Two web-based tools were developed to provide access to the data. The Directivity-Based Intensity-Measure Interactive Maps provide the geographic distribution of intensity measures with an overlay of the fault sources and geographic features. The Directivity-Based PSHA Interactive Tool interpolates the study data to provide Uniform-Hazard Spectra with and without directivity at a user-specified location, Vs30, and return period. The tool also provides the directivity adjustment factor, defined as the ratio between with-directivity and without-directivity PSA. By using this tool, you may either use the with-directivity PSA values directly, or you may use the directivity-amplification factors and apply them to no-directivity PSA values obtained from your own PSHA analysis. These tools, as well as the data tables can be access from: https://www.risksciences.ucla.edu/nhr3/california-directivity.

ACKNOWLEDGMENTS

Support for this research project was provided by the California Energy Commission, Pacific Gas & Electric Company, and California Department of Transportation. The support of these organizations is greatly appreciated.

The opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the study sponsors, the Natural Hazards Risk and Resiliency Research Center, or the Regents of the University of California.

CONTENTS

AE	STRAG	CT	I
AC	KNOW	LEDGMENTS	II
CO	NTEN	۲S	III
LIS	ST OF F	TIGURES	v
II	ST OF 1		VII
4			VII 4
1.	INI	RODUCTION	1
	1.1	Site Parameters	2
	1.2	DIRECTIVITY-AMPLIFICATION FACTOR	8
	1.3	SPECTRAL PERIODS	9
	1.4	DIRECTIVITY MODELS	9
	1.5	GEOGRAPHIC-DISTRIBUTION DATA	9
2	PRO	CESSING OF PSHA RESULTS	10
	2.1	Data Format	10
	2.2	HAZARD-ANALYSIS RESULTS: RAW OUTPUT DATA	12
	2.3	DATA COLLECTION: COMBINING ALL RESULTS	17
	2.4	DATA POST-PROCESSING: COMPUTING DERIVATIVE VALUES	18
	2.5	SITE-SPECIFIC DATA PLOTS	18
	2.6	GEOGRAPHIC-DISTRIBUTION TABLES & MAPS: GROUPING DATA BY METRIC	18
	2.7	INTERACTIVE GEOGRAPHIC-DISTRIBUTION MAPS	19
3	DAT	ASETS: SITE DATA	20
	3.1	HAZARD-CURVE DATA: INITIAL COLLECTION AND PROCESSING (.OUT3 OUTPUT)	20
	3.2	HAZARD-CURVE DATA: HAZARD LEVELS ONLY (.OUT3 OUTPUT)	20
	3.3	HAZARD-CURVE DATA: DIRECTIVITY AMPLIFICATION FACTOR (.OUT3 OUTPUT)	20
	3.4	HAZARD-CURVE DATA: ALL, NO-DIRECTIVITY PSA, WITH-DIRECTIVITY PSA, AND DIRECTIVITY-AMPLIFICAT	TION
	FACTOR	s at all Sites, VS30s, and Periods (.out3 output)	21
	3.5	UNIFORM-HAZARD SPECTRA DATA: INITIAL COLLECTION AND PROCESSING (*UHSOUTPUT.TXT OUTPUT)	21
	3.6	UNIFORM-HAZARD SPECTRA DATA: DEAGGREGATION DATA (*UHSOUTPUT.TXT OUTPUT)	22
	3.7	UNIFORM-HAZARD SPECTRA DATA: DIRECTIVITY AMPLIFICATION FACTOR (*UHSOUTPUT.TXT OUTPUT)	22
	3.8	UNIFORM-HAZARD SPECTRA DATA: ALL NO-DIRECTIVITY PSA, WITH-DIRECTIVITY PSA, AND DIRECTIVIT	Y-
	Amplif	ICATION FACTORS AT ALL SITES, VS30S, AND PERIODS (*UHSOUTPUT.TXT OUTPUT)	22
	3.9	DEAGGREGATION DATA (*UHSOUTPUT.TXT OUTPUT)	23
	3.10	GROUND-MOTION-MODEL HAZARD CURVES (*.OUT6 DATA)	23
	3.11	DIRECTIVITY-MODEL HAZARD CURVES (*.OUT6 DATA)	23
	3.1Z	DIRECTIVITY-MODEL PSA AND DIRECTIVITY-AMPLIFICATION FACTOR HAZARD CURVES AND UNIFORM-HAZA	ARD
	SPECTR		24
	3.13 2.14	$PAKENI-FAULI \Pi AZARD DATA (*.0017 DATA)$	24 24
	3.14	FAKENI-FAULI MALAKU KATIU DATA (*.0017 DATA)	24
4	DIR	ECTIVITY-BASED PSHA RESULTS	26

	4.1	HAZARD CURVES	26
	4.2	UNIFORM-HAZARD SPECTRA	30
	4.3	Deaggregation Data Plots	34
5	GEC	GRAPHIC-DISTRIBUTION TABLES	35
	5.1	GEOGRAPHIC-DISTRIBUTION TABLES – HAZARD CURVES	35
	5.2	GEOGRAPHIC-DISTRIBUTION TABLES – DIRECTIVITY-MODEL HAZARD CURVES	37
	5.3	GEOGRAPHIC-DISTRIBUTION TABLES – UNIFORM-HAZARD SPECTRA	38
	5.4	GEOGRAPHIC-DISTRIBUTION TABLES – DIRECTIVITY-MODEL UNIFORM-HAZARD SPECTRA	39
6	GEC	GRAPHIC-DISTRIBUTION MAPS	41
7	DIR	ECTIVITY-BASED PROBABILISTIC HAZARD IN CALIFORNIA: INTERACTIVE MAPS	51
8	DIR	ECTIVITY-BASED PSHA INTERACTIVE TOOL	69
9	SUM	IMARY	76
10) REF	ERENCES	77
11	L APF	ENDIX A. DATASET TABLES: SAMPLE FILE CONTENT AND FORMAT	78
	11.1	HAZARD-CURVE DATA: INITIAL COLLECTION AND PROCESSING (.OUT3 OUTPUT)	78
	11.2	HAZARD-CURVE DATA: HAZARD LEVELS ONLY (.OUT3 OUTPUT)	78
	11.3	HAZARD-CURVE DATA: DIRECTIVITY AMPLIFICATION FACTOR (.OUT3 OUTPUT)	79
	11.4	HAZARD-CURVE DATA: ALL, NO-DIRECTIVITY PSA, WITH-DIRECTIVITY PSA, AND DIRECTIVITY-AMPLIFICATION AND DIRECTIVITY PSA, AND DIRECTIVITY AMPLIFICATION AND DIRECTIVITY PSA.	TION
	Factor	IS AT ALL SITES, VS30S, AND PERIODS (.OUT3 OUTPUT)	80
	11.5	UNIFORM-HAZARD SPECTRA DATA: INITIAL COLLECTION AND PROCESSING (*UHSOUTPUT.TXT OUTPUT)	81
	11.6	UNIFORM-HAZARD SPECTRA DATA: DEAGGREGATION DATA (*UHSOUTPUT.TXT OUTPUT)	82
	11.7	UNIFORM-HAZARD SPECTRA DATA: DIRECTIVITY AMPLIFICATION FACTOR (*UHSOUTPUT.TXT OUTPUT)	83
	11.8	UNIFORM-HAZARD SPECTRA DATA: ALL NO-DIRECTIVITY PSA, WITH-DIRECTIVITY PSA, AND DIRECTIVITY	ГҮ-
	Amplif	ICATION FACTORS AT ALL SITES, VS30s, AND PERIODS (*UHSOUTPUT.TXT OUTPUT)	84
	11.9	DEAGGREGATION DATA (*UHSOUTPUT.TXT OUTPUT)	85
	11.10	GROUND-MOTION-MODEL HAZARD CURVES (*.OUT6 DATA)	86
	11.11	DIRECTIVITY-MODEL HAZARD CURVES (*.OUT6 DATA)	86
	11.12	DIRECTIVITY-MODEL PSA AND DIRECTIVITY-AMPLIFICATION FACTOR HAZARD CURVES AND UNIFORM-H	ÍAZARD
	Spectr	A (*.OUT6 DATA)	87
	11.13	Parent-Fault Hazard Data (*.out7 data)	88
	11.14	Parent-Fault Hazard Ratio Data (*.out7 data)	89

LIST OF FIGURES

Figure 1.1. Selected site locations	3
Figure 1.2. UCERE3 fault traces map for the state of California	4
Figure 1.3 Site locations on land (green circles) for the bazard analysis Black lines show the	• •
LICERE3 fault traces. The site labels are provided in intervals of 10 in blue circles. 50 in black	
circles and 100 in magenta circles	5
Figure 1.4. Site-Specific V/s30 (V/sSS) m/s for all sites on land, obtained from provy models	. 0
developed for California	6
Figure 1.5. Estimated site-specific basin dopth form 71 (km) at select locations, where availab	. 0
Tigure 1.5. Estimated site-specific basin depth term ΣT (km) at select locations, where availab	ا ت . 7
Figure 1.6. Estimated site specific basin depth term 72 (km) at select lesstions, where availab	. <i>1</i>
Figure 1.6. Estimated site-specific basin depth term 22 (km) at select locations, where availab	۱e. ٥
Figure 2.4. Cohomotic of UDEE data structure	.0
Figure 2.1. Schematic of HDF5 data structure	11
Figure 2.2. Screenshot of HAZ-45 Jourd sample file.	14
Figure 2.3. Screenshot of HAZ-45 .out6 sample file.	14
Figure 2.4. Screenshot of HAZ-45 .out7 sample file.	14
Figure 2.5. Screenshot of HAZ-45 *-UHSoutput.txt. HAZ-45 sample file, Uniform Hazard Spec	tra
Table	15
Figure 2.6. Screenshot of HAZ-45 *-UHSoutput.txt. HAZ-45 sample file, Deaggregation Data	
Table	16
Figure 2.7. Graphic representation of HDF5 file for State-Wide PSHA	17
Figure 4.1. NHR3_California_DirectivityPSH_Site15023_Vs300_HazardCurves.jpg	27
Figure 4.2.	
NHR3_California_DirectivityPSH_Site15023_Vs300_HazardCurves_Vs300DirectivityRatio.jpg	J
	28
Figure 4.3. NHR3_California_DirectivityPSH_Site00020_Vs760_DirectivityRatio.jpg	29
Figure 4.4. NHR3_California_DirectivityPSH_Site00020_Vs760_DirectivityRatio_NoUnityLB.jp	bg
	29
Figure 4.5. NHR3_California_DirectivityPSH_Site15023_Vs300_Spectra.jpg	32
Figure 4.6.	
NHR3_California_DirectivityPSH_Site15023_Vs300_Spectra_Vs300DirectivityRatio.jpg	32
Figure 4.7. NHR3 California DirectivityPSH Site00020 Vs760 DirRatio.jpg	33
Figure 4.8. NHR3 California DirectivityPSH Site00020 Vs760 DirRatioNoLB.jpg	33
Figure 4.9. NHR3 California DirectivityPSH Site00004 Vs180 Deaggr T0pt1.ipg	34
Figure 6.1. PSA with No Directivity	42
Figure 6.2. PSA with Directivity. Weighted Model, Vs-760 directivity-adjustment factor.	42
Figure 6.3. PSA with Directivity. Weighted Model, Vs30 dir-adjustment	43
Figure 6.4. PSA with Directivity, CS13 model	43
Figure 6.5 PSA with Directivity, BS13 model	44
Figure 6.6. PSA with Directivity, BSS20 model	44
Figure 6.7 PSA with Directivity, BS020 model	45
righte on the one with Directivity, De ton additionnal Component model	-10

Figure 6.8. PSA with Directivity, BS13-FaultParallel Component model	45
Figure 6.9. Directivity-Adjustment Factor, Weighted Model	46
Figure 6.10. Directivity-Adjustment Factor, Weighted Model (Vs30<>760m/s)	46
Figure 6.11. Directivity-Adjustment Factor with no lower bound, weighted model	47
Figure 6.12. Directivity-Adjustment Factor, CS13 model	47
Figure 6.13. Directivity-Adjustment Factor, BS13 model	48
Figure 6.14. Directivity-Adjustment Factor, BSS20 model	48
Figure 6.15. Directivity-Adjustment Factor, BS13-FaultNormal Component model	49
Figure 6.16. Directivity-Adjustment Factor, BS13-FaultParallel Component model	49
Figure 6.17. Enlarged detail of intensity-measure map	50
Figure 7.1. Directivity-Based Probabilistic Seismic Hazard in California: Interactive Maps We	b
Portal	53
Figure 7.2. Oscillator-Period Options for directivity-based IM	54
Figure 7.3. Oscillator-Period Options for no-directivity PSA	55
Figure 7.4. Recommended Directivity-Adjustment Factor (with lower bound)	56
Figure 7.5. Computed Directivity-Adjustment Factor (no lower bound)	57
Figure 7.6. Directivity-Adjustment Factor: CS13	58
Figure 7.7. Site-Data hovering	59
Figure 7.8. Site Data pop-up box	60
Figure 7.9. Interactive map of site-specific Vs30.	61
Figure 7.10. Interactive map of site-specific Z1.0.	62
Figure 7.11. Interactive map of site-specific Z2.5.	63
Figure 7.12. Interactive map of UCERF-3 Fault Sources	64
Figure 7.13. Interactive map of UCERF-3 Fault Sources: clicking on a fault	65
Figure 7.14. Additional-data layers	66
Figure 7.15. Add-marker option (click on button circled in red in the figure, and enter data in t	the
pup-up window)	67
Figure 7.16. Add distance metrics option (click on lower-left button in the figure and enter da	ta in
the pup-up window)	68
Figure 8.1. Main page for Directivity-Based PSHA Web Tool	70
Figure 8.2. No-Directivity UHS computed by Interactive PSHA Web Tool	71
Figure 8.3. User selection for No-Directivity UHS in Interactive PSHA Web Tool	71
Figure 8.4. With-Directivity UHS in Interactive PSHA Web Tool.	72
Figure 8.5. Updating input parameters in Interactive PSHA Web Tool	72
Figure 8.6. Interactive maps in PSHA Web Tool	73
Figure 8.7. Data Tables in Interactive PSHA Web Tool	74
Figure 8.8. Deaggregation data in Interactive PSHA Web Tool.	75
Figure 8.9. Fault-Normal and Fault-Parallel Component Data in Interactive PSHA Web Tool.	75

LIST OF TABLES

Table 2.1. List of spectral periods used in this study. Peak ground acceleration (PGA) is	
assumed to be equivalent to the period of 0.01 sec. Hazard was also conducted for peak grou	und
velocity (PGV), which uses a value of -1 in the hazard program	.13
Table 2.2. List of Annual Frequency of Exceedance, corresponding probability of exceedance	;
and return period used in this study	.13
Table 4.1. Uniform-Hazard Spectra Plot Filenames: Representative site where PSHA with	
directivity was performed only at VS760	.26
Table 4.2. Uniform-Hazard Spectra Plot Filenames: Representative site where PSHA with	
directivity was performed at all Vs30	.27
Table 4.3. Hazard-Curve Plot Filenames: Representative site where PSHA with directivity wa	as
performed only at VS760	.30
Table 4.4. Hazard-Curve Plot Filenames: Representative site where PSHA with directivity wa	as
performed at all Vs30	.31
Table 5.1. Geographic-Distribution Tables – Hazard Curves	.36
Table 5.2. Geographic-Distribution Tables – Directivity-Model Hazard Curves	.37
Table 5.3. Geographic-Distribution Tables – Uniform-Hazard Spectra	.39
Table 5.4. Geographic-Distribution Tables – Directivity-Model Uniform-Hazard Hazard Spectra	а
	.39
Table 11.1. Hazard-Curve Data: Initial Collection and Processing	.78
Table 11.2. Source-Hazard Data – Hazard-Levels Only	.78
Table 11.3. Source-Hazard Data – Directivity Amplification Factor	.79
Table 11.4. Source-Hazard Data – All: noDir and Dir	.80
Table 11.5. Uniform-Hazard Spectra Data: Initial Collection and Processing	.81
Table 11.6. Uniform-Hazard Spectra Data: Deaggregation Data	.82
Table 11.7. UHS Data – Directivity Amplification Factor	.83
Table 11.8. Source-Hazard Data – All: noDir and Dir	.84
Table 11.9. Deaggregation Data	.85
Table 11.10. Ground-Motion Model Hazard Curves	.86
Table 11.11. Directivity-Model Hazard Curves	.86
Table 11.12. Directivity-Model PSA and Directivity-Amplification Hazard Curves and UHS	.87
Table 11.13. Parent-Fault Hazard Data	.88
Table 11.14. Parent-Fault Hazard Ratio Data	.89

1.Introduction

A state-wide probabilistic seismic hazard analysis (PSHA) was performed for California. The state-wide PSHA includes, for the first time, the effects of directivity of ground motion. A total of 19,316 sites based on a grid spacing of 0.05 by 0.05 degrees longitude and latitude were used in the analysis. These sites were selected to cover the entire state, as shown in Figure 1.1, and extend slightly beyond the state boundaries.

A project-specific version of HAZ-45 (HAZ-45-CEC) was developed to perform the PSHA for this study. The hazard analysis was performed for peak ground velocity (PGV) and for 22 spectral periods ranging from 0.01 sec (assumed to be equivalent to peak ground acceleration, PGA) to 10 sec. For each site, PSHA was performed for a range of site conditions with travel-time averaged shear-wave velocity in the top 30 m of the profile (Vs30) values of 180, 300, 400, 500, 760, and 1,100 m/sec. These six Vs30 values were selected to allow for a reasonable approximation of the hazard results for any Vs30 value between 180 and 1,100 m/sec not explicitly used in the study based on interpolation of the results obtained at neighboring Vs30 values. In addition, the PSHA was performed for each site for the site-specific estimate of Vs30 obtained from proxy models developed for California. Site-specific basin depth estimates were evaluated for the selected sites and used along with the site-specific Vs30 values to calculate the hazard for sites where site-specific basin depths estimates were deemed reliable.

Directivity-Based PSHA was also performed at all sites for the case of Vs30 = 760m/s. As presented in the companion reports, the directivity-based PSHA was also performed at all other Vs30, except for the site-specific value, for a number of sites located in the North-West region of California.

This report is the third in a series of three reports for the documentation of the directivitybased state-wide PSHA study for California (Al Atik, et al, 2022 and 2023). The first report described the input seismic source and ground motion models. The second report described the implementation of near-field directivity effects on the ground motion for the state-wide hazard study. This third report describes the data collected and processed from the hazard analysis and development of a user-interactive web tool. The web tool, which allows the user to generate hazard results with and without directivity effects at any location in California and for any Vs30 site condition between 180 and 1,100 m/sec.

Two web-based tools were developed to provide access to the data. The Directivity-Based Intensity-Measure Interactive Maps provide the geographic distribution of intensity measures with an overlay of the fault sources and geographic features. The Directivity-Based PSHA Interactive Tool interpolates the study data to provide Uniform-Hazard spectra with and without directivity at a user-specified location, Vs30, and return period. The tool also provides the directivity adjustment factor, defined as the ratio between with-directivity and without-directivity PSA. By using this tool, you may either use the with-directivity PSA values directly, or you may use the directivity-amplification factors and apply them to no-directivity PSA values obtained from your own PSHA analysis.

The data processing presented in this report consists of three parts. The HAZ-45 program generates a set of output ASCII files that are formatted to be read by a human, not a computer. These first-set files were read in a systematic way and processed to be able to be interpreted by a computer algorithm into a second set of data that is stored in a systematic manner and easy to read programmatically. The third set of data comprises post-processed data that is easy to interpret, such as intensity-measure maps and graphs.

The web-based tools, as well as the data tables can be access from: https://www.risksciences.ucla.edu/nhr3/california-directivity.

1.1 Site Parameters

Figure 1.2 shows the location of the crustal sources in California developed in the Uniform California Earthquake Rupture Forecast Version 3 (UCERF3) model (Field et al., 2014) seismic sources used in the seismic hazard analysis.

Even though the PSHA analyses were performed on 19,316 sites in California, only 18,338 are located on land. Figure 1.3 shows the selected sites that are located on land, along with their site ID, as well as the UCERF-3 fault sources. This figure is a good reference to determine the location of individual sites and which sites are closest to the fault sources.

A map of the site-specific estimates of Vs30 for the 18,338 sites in California are shown in Figure 1.4. The site-specific Vs30 values are provided in the electronic appendix to this report. These site-specific Vs30 estimates range from 177 to 1,115 m/sec and were used along with default Z1.0 and Z2.5 estimates in the PSHA analysis. The use of site-specific basin depth estimates is discussed in the first companion report. Figure 1.5 and Figure 1.6 show the site-specific values of Z1 and Z2.5 values, respectively, for sites in which these values were estimated with confidence. A total of 4,419 out of the 19,316 sites in California had confident estimates of site-specific basin depth

parameters. The list of site-specific Z1 and Z2.5 values is provided in the electronic appendix to this report.

Figure 1.1. Selected site locations.

Figure 1.2. UCERF3 fault traces map for the state of California.

Figure 1.3. Site locations on land (green circles) for the hazard analysis. Black lines show the UCERF3 fault traces. The site labels are provided in intervals of 10 in blue circles, 50 in black circles and 100 in magenta circles.

Figure 1.4. Site-Specific Vs30 (VsSS) m/s for all sites on land, obtained from proxy models developed for California.

Figure 1.5. Estimated site-specific basin depth term Z1 (km) at select locations, where available.

Figure 1.6. Estimated site-specific basin depth term Z2 (km) at select locations, where available.

1.2 Directivity-Amplification Factor

As described in the companion reports, a PSHA that considered directivity effects was performed at all sites for the case of VS760, while a PSHA that did not consider directivity effects was performed for all sites and Vs30 cases. Using the results of these analyses, the Directivity-Amplification Factor was defined as the ratio of PSA considering directivity to the PSA not considering directivity at a set of user-defined return periods.

Once computed for the case of VS760, the Directivity-Amplification Factor was used to estimate the directivity-based PSA for all other Vs30 cases by multiplying the no-directivity PSA computed for a particular Vs30 (180-1100m/s) by the Directivity-Amplification Factor. As a conservative measure, a lower bound of 1.0 was set for the Directivity-Amplification Factor used in these calculations.

As presented in the companion report, additional directivity-based PSHA were performed at a set of sites in the North-West region of California for all Vs30 cases and a new set of Directivity-Amplification Factors were computed for each Vs30 and stored in the datasets. While these values are used in the site-specific tool, all tables and maps for directivity are based on the VS760-based Directivity-Amplification Factor.

1.3 Spectral Periods

As presented in the companion report, the directivity-based PSHA was performed only for spectra periods of 0.5sec and higher. In the datasets presented in the report, it is assumed that the directivity and no-directivity PSHA results for the lower periods are equal and a Directivity-Amplification Factor of 1.0 was assigned to these cases.

1.4 Directivity Models

As presented in the companion reports, the directivity-based PSHA computed a weighted average directivity model. All directivity-based data (PSA and Directivity-Amplification Factor) presented in this report are based on this model. However, the hazard-analysis results for each individual directivity model presented in the companion report, was also processed and presented in this report. The Directivity-Amplification Factors for each directivity model were computed and included in the datasets contained in this report.

1.5 Geographic-Distribution Data

In addition to being grouped by site, the Uniform-Hazard Spectra data were further postprocessed and grouped by intensity measure, resulting in tables and maps to quantify the geographic distribution of such quantities. These PSA values with and without directivity, as well as the directivity-amplification factors for the individual directivity models are such intensity measures. All directivity models – weighted average and individual directivity models – were processed. One table for each Vs30, spectral period, and return period was produced for each intensity measure. These tables were produced in csv format. These data were further plotted in a map (jpg file) to enable better visualization and reporting of the data. Interactive maps in HTML format were also created for each dataset.

2 Processing of PSHA Results

This chapter provides details on the different types of data processing that were performed. The data itself is presented in the next chapter.

2.1 Data Format

Because of the significant size of the data, the collected data were saved to a series of HDF5 files (Hierarchical Data Format) which store the data in compressed binary format. HDF5 format is widely used in the scientific and computer-science community. HDF5 file stands for Hierarchical Data Format 5. It is an open-source file for storing large amounts of data. As the name suggests, it stores data in a hierarchical structure within a single file. An HDF5 file is a container for two kinds of objects: datasets, which are array-like collections of data, and groups, which are folder-like containers that hold datasets and other groups. The most fundamental thing to remember when using HDF5 is that groups work like dictionaries, and datasets work like NumPy arrays. The benefits of using HDF5 are as follows:

- Heterogeneous Data Storage: HDF5 files can store many different types of data within the same file. One HDF5 can replace many CSV/table files.
- Supports Data Slicing: extracting portions of the dataset as needed for analysis. Unlike a JSON file, you do not need to upload the entire file to memory.
- Can be accessed via many interpreters (Matlab, Python, R, etc.) (= Open Format)
- Because it uses a hierarchical data structure, it is self-documenting.

Figure 2.1 shows a schematic of the HDF5 data structure. This data structure is very similar to the JSON format. However, pure JSON can only be stored in ASCII format and the entire JSON dictionary must be loaded to memory. HDF5 format saves the data in its original binary format. For example, numpy arrays in python are stored as numpy arrays. This format results in more efficient memory and programmatic access management.

Because the HDF5 is binary, it cannot be easily viewed via a text editor. However, a simple script can be written to query the keys and attributes of the data. All data processing was performed in Python.

Figure 2.1. Schematic of HDF5 data structure

2.2 Hazard-Analysis Results: Raw Output Data

A project-specific version of HAZ-45 (HAZ-45-CEC) was developed to perform the PSHA for this study. The hazard analysis was performed for peak ground velocity (PGV) and for 22 spectral periods ranging from 0.01 sec (assumed to be equivalent to peak ground acceleration, PGA) to 10 sec. For each site, PSHA was performed for a range of site conditions with travel-time averaged shear-wave velocity in the top 30 m of the profile (Vs30) values of 180, 300, 400, 500, 760, and 1,100 m/sec. In addition, the PSHA was performed for each site for the site-specific estimate of Vs30 obtained from proxy models developed for California. Site-specific basin depth estimates were evaluated for the selected sites and used along with the site-specific Vs30 values to calculate the hazard for sites where site-specific basin depths estimates were deemed reliable.

Because HAZ-45 performs the hazard analysis for each case (site location, Vs30, directivity case), it generated a set of output files for each case, for a total of over 160,000 individual data sets. Each dataset contained approximately 100 files, depending on the Vs30 cases and the number of periods considered (directivity analysis was performed only on longer periods). HAZ-45 generates 8 types of files, of these the following were processed:

- *.out3: (one file per period, including PGV). This file contains the hazard-curve data generated for each fault group (e.g., fault sources or gridded seismicity groups) as well as the total weighted annual rate of exceedance, the annual Poisson probability, and the corresponding mean Magnitude, Distance, and Epsilon values. Shown in Figure 2.2.
- *.out6: (one file per period, including PGV). This file contains the annual probability of exceedance for each ground-motion model used at the site. For the case where directivity is considered, it also contains the annual probability of exceedance for each directivity model. Shown in Figure 2.3.
- *.out7. (One file per period, including PGV). This file contains the annual probability of exceedance for each fault source. Shown in Figure 2.4.
- *-UHSoutput.txt. HAZ-45 outputs one UHS-out file for each case. This file contains a series of output tables:
 - Table of 23 user-defined periods. The user-defined spectral periods are given in Table 2.1.
 - Table of user-defined annual frequency of exceedance, along with the corresponding probability of exceedance and return period. The user-defined return periods are given in Table 2.2.
 - Table of PSA (g) at each user-defined annual rate of exceedance (which corresponds to a specific return period) and each user-defined spectral period. These are the Uniform-Hazard Spectra (UHS) table. Shown in Figure 2.5.
 - Tables of mean Magnitude, Distance and Epsilon (Magnitude Bar, Distance Bar, Epsilon Bar) corresponding to the UHS table. Shown in Figure 2.5.

• Deaggragation Data Tables for each Spectral Period, Epsilon Bin Range (-20-20) and hazard level (AEP or Return Period). Each table contains the fractional contribution of different magnitude and distance bins. Shown in Figure 2.6.

Table 2.1. List of spectral periods used in this study. Peak ground acceleration (PGA) is assumed to be equivalent to the period of 0.01 sec. Hazard was also conducted for peak ground velocity (PGV), which uses a value of -1 in the hazard program.

Spectral period (s)	0 (or 0.01, PGA), 0.02, 0.03, 0.04, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.75, 1, 1.5, 2, 3, 4, 5, 7.5, 10, -1 (PGV)
---------------------	---

Table 2.2. List of Annual Frequency of Exceedance, corresponding probability of exceedance and return period used in this study.

Annual Frequency of	1.97E-02,1.01E-02,2.11E-03,1.05E-03,1.00E-03,4.04E-
Exceedance (/yr)	04,2.00E-04,1.00E-04
Annual Probability of	1.95E-02,1.00E-02,2.11E-03,1.05E-03,1.00E-03,4.04E-
Exceedance (/yr)	04,2.00E-04,1.00E-04
Return Period (yr)	50.862,99.499,474.561,949.118,999.5,2474.911,5000,10000

	6	0	Number	r of fa	aults,	fault c	ases									
Fault	Name			nFlt	System	n Number	Rupture	Dist	BJF Dis	st Campbell	Dist nWidth	nMaxmag Max	Mag Wts.	Fault Type	HWFlag Vs	5
STTE	1 COORDT	ΝΔΤΕς·	-117 200	32 34	50											
1	nAtten	INATES:	117.200	52.5.												
Atte	enuation:	1	0.0100	3												
20	nAmp															
AMP:					pS	Seg al W	t MinDi	s 0.	001000	0.001600	0.002600	0.004300	0.007000	0.011300	0.018300	0.029800
Site	00001-F1	ts-seled	ct		1.0	000 1.00	аз.	0 0.1	449E+00	0.1381E+00	0.1239E+00	0.1005E+00	0.7307E-01	0.4790E-01	0.2899E-01	0.1699E-01
	Site000	01-Grd-9	SS		1.0	000 1.00	ð 1.	0 0.4	339E+00	0.3420E+00	0.2455E+00	0.1579E+00	0.9358E-01	0.5132E-01	0.2588E-01	0.1205E-01
Si	ite00001-	Grd-RV-H	HW		1.0	000 1.00	ə 1.	0 0.1	430E+00	0.1125E+00	0.8173E-01	0.5411E-01	0.3350E-01	0.1942E-01	0.1048E-01	0.5278E-02
Si	ite00001-	Grd-RV-F	FW		1.0	000 1.00	ə 1.	0 0.1	420E+00	0.1114E+00	0.8056E-01	0.5303E-01	0.3260E-01	0.1873E-01	0.9993E-02	0.4958E-02
Si	ite00001-	Grd-NM-H	HW		1.0	000 1.00	ð 1.	0 0.6	657E-01	0.5057E-01	0.3395E-01	0.1970E-01	0.1024E-01	0.4772E-02	0.1947E-02	0.6828E-03
Si	ite00001-	Grd-NM-F	FW		1.0	000 1.00	ð 1.	0 0.6	608E-01	0.4996E-01	0.3331E-01	0.1915E-01	0.9824E-02	0.4495E-02	0.1791E-02	0.6091E-03
Wt_1	<pre>Fotal_Eve</pre>	nts/yr			0.0	00.0 000	0.	0 0.9	965E+00	0.8045E+00	0.5989E+00	0.4044E+00	0.2528E+00	0.1466E+00	0.7908E-01	0.4058E-01
Pois	sson_Prob	:			0.0	00.00	0.	0 0.6	5308E+00	0.5527E+00	0.4506E+00	0.3326E+00	0.2234E+00	0.1364E+00	0.7603E-01	0.3976E-01
M_ba	ar				0.0	00.0 000	0.	0 0.5	67E+01	0.573E+01	0.582E+01	0.591E+01	0.602E+01	0.612E+01	0.621E+01	0.628E+01
D_ba	ar				0.0	00.00	0.	0 0.1	55E+03	0.148E+03	0.138E+03	0.128E+03	0.116E+03	0.102E+03	0.862E+02	0.680E+02
Eps_	bar				0.0	00.00	0.	0 -0.1	L85E+01	-0.147E+01	-0.113E+01	-0.826E+00	-0.586E+00	-0.406E+00	-0.293E+00	-0.241E+00

Figure 2.2. Screenshot of HAZ-45 .out3 sample file.

1	1	1	0.5840E+01	0.4807E+01	0.3684E+01	0.2519E+01	0.1610E+01	0.9366E+00	0.5043E+00	0.254
1	1	2	0.5582E+01	0.4484E+01	0.3355E+01	0.2237E+01	0.1398E+01	0.7963E+00	0.4198E+00	0.200
1	1	3	0.6071E+01	0.5117E+01	0.4018E+01	0.2819E+01	0.1843E+01	0.1096E+01	0.6023E+00	0.310
1	1	4	0.6007E+01	0.5011E+01	0.3893E+01	0.2710E+01	0.1764E+01	0.1030E+01	0.5356E+00	0.249
1	1	5	0.5761E+01	0.4691E+01	0.3562E+01	0.2421E+01	0.1538E+01	0.8720E+00	0.4380E+00	0.19
1	1	6	0.6225E+01	0.5315E+01	0.4228E+01	0.3016E+01	0.2009E+01	0.1207E+01	0.6487E+00	0.311
1	1	7	0.6161E+01	0.5224E+01	0.4119E+01	0.2881E+01	0.1848E+01	0.1047E+01	0.5291E+00	0.24
1	1	8	0.5935E+01	0.4915E+01	0.3778E+01	0.2566E+01	0.1598E+01	0.8770E+00	0.4305E+00	0.19
1	1	9	0.6358E+01	0.5514E+01	0.4457E+01	0.3209E+01	0.2120E+01	0.1239E+01	0.6455E+00	0.30
1	1	10	0.5819E+01	0.4826E+01	0.3725E+01	0.2541E+01	0.1589E+01	0.8805E+00	0.4420E+00	0.20
1	1	11	0.5572E+01	0.4513E+01	0.3395E+01	0.2247E+01	0.1365E+01	0.7349E+00	0.3601E+00	0.16
1	1	12	0.6041E+01	0.5126E+01	0.4056E+01	0.2850E+01	0.1835E+01	0.1047E+01	0.5393E+00	0.25
1	0	1	0.1190E+01	0.9928E+00	0.7712E+00	0.5331E+00	0.3413E+00	0.1955E+00	0.1011E+00	0.482
1	0	2	0.1190E+01	0.9928E+00	0.7712E+00	0.5331E+00	0.3413E+00	0.1955E+00	0.1012E+00	0.48
1	0	3	0.1190E+01	0.9928E+00	0.7712E+00	0.5331E+00	0.3413E+00	0.1955E+00	0.1011E+00	0.48
1	0	4	0.1190E+01	0.9928E+00	0.7712E+00	0.5331E+00	0.3413E+00	0.1955E+00	0.1011E+00	0.48
1	0	5	0.1190E+01	0.9928E+00	0.7712E+00	0.5331E+00	0.3413E+00	0.1955E+00	0.1011E+00	0.48

Figure 2.3. Screenshot of HAZ-45 .out6 sample file.

SITE 1 COORE	DINATES:	-117.200	32.350								
1 nAtter	า										
Attenuatior	n: 1	0.0100									
20 nAmp											
AMP:				pSeg	al_Wt	MinDis	0.001000	0.001600	0.002600	0.004300	0.00700
ParentID:	341			1.000	1.000	334.9	0.1515E-03	0.1509E-03	0.1484E-03	0.1392E-03	0.1192E-
ParentID:	49			1.000	1.000	315.9	0.1358E-03	0.1348E-03	0.1314E-03	0.1223E-03	0.1049E-
ParentID:	286			1.000	1.000	287.9	0.3543E-03	0.3494E-03	0.3389E-03	0.3190E-03	0.2860E-
ParentID:	301			1.000	1.000	221.0	0.1027E-01	0.9300E-02	0.7159E-02	0.4290E-02	0.2169E-
ParentID:	282			1.000	1.000	200.2	0.2537E-02	0.2455E-02	0.2194E-02	0.1665E-02	0.1044E-
ParentID:	294			1.000	1.000	179.5	0.1049E-03	0.1046E-03	0.1032E-03	0.9851E-04	0.8878E-
ParentID:	283			1.000	1.000	182.4	0.3299E-02	0.3249E-02	0.3055E-02	0.2546E-02	0.1750E-
ParentID:	250			1.000	1.000	188.4	0.2104E-03	0.2080E-03	0.1972E-03	0.1657E-03	0.1134E-
ParentID:	119			1.000	1.000	185.4	0.1416E-03	0.1404E-03	0.1369E-03	0.1304E-03	0.1226E-
ParentID:	295			1.000	1.000	176.7	0.2148E-02	0.2119E-02	0.2028E-02	0.1829E-02	0.1526E-
ParentID:	284			1.000	1.000	180.8	0.8546E-03	0.8463E-03	0.8124E-03	0.7227E-03	0.5811E-
ParentID:	901			1.000	1.000	195.1	0.2213E-04	0.2202E-04	0.2161E-04	0.2066E-04	0.1931E-
ParentID:	289			1.000	1.000	173.2	0.1071E-03	0.1071E-03	0.1067E-03	0.1057E-03	0.1034E-
ParentID:	401			1.000	1.000	156.4	0.1862E-03	0.1861E-03	0.1857E-03	0.1842E-03	0.1803E-
ParentID:	293			1.000	1.000	142.0	0.1042E-02	0.1041E-02	0.1034E-02	0.9985E-03	0.9002E-

Figure 2.4. Screenshot of HAZ-45 .out7 sample file.

·									
Testing	Levels :	0.019661	0.010050	0.002107	0.001054	0.001001	0.000404	0.000200	0.000100
Return P	eriod(vr).	50 862	99 499	474 561	949 118	999 500	2474 911	5000 000	10000 000
Recurrent in		50.002	55.455	4/4.001	545.110	555.500	24/4.211	5000.000	10000.000
P	eriod (sec)								
1	0.010	0.069904	0.106263	0.244631	0.336538	0.343300	0.486598	0.619821	0.770703
-	0.000	0 070077	0 107045	0 240456	0 242272	0 250276	0 4001 33	0 000114	0 702627
2	0.020	0.0/00//	0.10/945	0.249450	0.545272	0.550270	0.499122	0.035114	0./9205/
3	0.030	0.077896	0.119185	0.277095	0.380023	0.388220	0.561018	0.712412	0.898719
1	0 010	A A87721	0 135217	A 318832	A 135398	0 115381	0 6/1356	0 828658	1 031728
	0.040	0.00//24	0.155217	0.510052	0.455558	0.440004	0.041550	0.020000	1.051/20
5	0.050	0.098049	0.151396	0.360284	0.496670	0.508715	0.732140	0.948847	1.185735
6	0 075	0 125601	0 194552	0 464197	0 642328	0 656928	0 959162	1 238478	1 565981
-	0.075	0.125001	0.104002	0.404107	0.042520	0.050520	0.000102	1.250470	1.505501
/	0.100	0.143362	0.221937	0.532283	0./31953	0.749369	1.088282	1.423/16	1.///0//
8	0.150	0.156772	0.240685	0.575537	0.799012	0.818819	1.184158	1,546558	1,934166
-	0,000	0 150071	0 120400	0 549020	0 756551	0 774004	1 101505	1 470212	1 001150
9	0.200	0.1509/1	0.230490	0.548939	0./56551	0.//4884	1.121595	1.4/0313	1.831150
10	0.250	0.139443	0.211509	0.498174	0.682060	0.697906	1.013590	1.314034	1.655795
11	0 300	A 128282	A 193757	0 118331	0 616340	A 630111	0 010362	1 180/25	1 50/2/6
11	0.500	0.120205	0.195/5/	0.440554	0.010340	0.050111	0.919502	1.100425	1.304240
12	0.400	0.107920	0.161203	0.370541	0.514470	0.526196	0.757222	0.981404	1.236664
13	0.500	0.091783	0.137192	0.317837	0.435066	0.445382	0.645581	0.844985	1.060178
14	0.750	0.001177	0.000100	0.000000	0.000105	0.016710	0.461000	0.000517	0.764020
14	0.750	0.0641//	0.090100	0.223322	0.309125	0.316/19	0.461098	0.602517	0.764938
15	1.000	0.046157	0.069449	0.163325	0.228076	0.233305	0.345498	0.449522	0.576712
16	1 500	a a28772	0 043759	a 101702	0 1/6580	0 150024	Q 222578	A 2913/1	0 372603
10	1.500	0.020/72	0.045755	0.104/02	0.140500	0.150024	0.222570	0.201041	0.572005
1/	2.000	0.02018/	0.031221	0.0/6905	0.10/551	0.110256	0.16338/	0.216293	0.2/4882
18	3.000	0.012124	0.019224	0.049445	0.070005	0.071846	0.107240	0.141928	0.182136
10	1 000	0 000274	0 012504	0 026202	0 052462	0 052744	0 001/6/	0 107225	0 120574
19	4.000	0.0005/4	0.015594	0.000000	0.052405	0.055/44	0.001404	0.10/335	0.1505/4
20	5.000	0.006206	0.010333	0.029043	0.041977	0.043135	0.065598	0.087661	0.113371
21	7 500	0 003697	0 006426	0 019151	0 028242	0 028989	0 044576	0 059736	0 076739
21	7.500	0.005057	0.000420	0.010101	0.020242	0.020505	0.0445/0	0.000700	0.070755
22	10.000	0.002442	0.004383	0.013/18	0.0202/1	0.020848	0.031982	0.042/51	0.05481/
23	-1.000	5.223123	8.088039	19.386177	26,682859	27.307693	39,696819	51,715790	64.653000
	_								
Magnitud	e Bar Results:								
- 1	0 010	6 54	6 63	6 69	6 69	6 69	6 68	6 66	6 64
-	0.010	0.54	6.05	6.00	6.00	0.05	0.00	0.00	0.04
2	0.020	6.54	6.62	6.68	6.68	6.68	6.66	6.65	6.63
3	0.030	6.54	6.61	6.67	6.67	6.67	6.66	6.65	6.63
1	0 010	6 51	6 59	6 65	6 65	6 65	6 64	6 63	6 62
	0.040	0.51	0.55	0.05	0.05	0.05	0.04	0.05	0.02
5	0.050	6.49	6.58	6.64	6.64	6.64	6.63	6.62	6.60
6	0.075	6.46	6.53	6.58	6.58	6.58	6.58	6.57	6.55
	0 100	C 40	6 50	C	C	C	C	C E A	6 50
/	0.100	0.42	0.50	0.55	0.55	0.55	0.00	0.54	0.52
8	0.150	6.43	6.50	6.58	6.59	6.59	6.59	6.59	6.58
٩	A 200	6 47	6 55	6 65	6 67	6 67	6 68	6 69	6 68
	0.200	0.47	0.55	0.05	0.07	0.07	0.00	0.05	0.00
10	0.250	6.52	6.62	6.72	6.74	6.74	6./6	6.//	6.//
11	0.300	6.56	6.67	6.78	6.81	6.81	6.83	6.84	6.84
10	0 400	6 67	6 76	6 00	6 06	6 06	6 09	6 00	6 00
12	0.400	0.0/	0.70	0.92	0.90	0.90	0.90	0.99	0.99
13	0.500	6.71	6.83	7.01	7.05	7.06	7.09	7.11	7.11
14	0 750	6 81	6 94	7 16	7 21	7 21	7 24	7 26	7 27
4-	0.750	0.01	0.04	7.10	7.21	7.21	7.24	7.20	,.2,
15	1.000	6.88	7.02	7.24	/.30	7.30	/.35	7.36	/.3/
16	1.500	7.00	7.16	7.40	7.46	7.47	7.51	7.53	7.54
17	2 000	7.06	7 24	7 40	7 55	7 55	7 60	7 60	7 62
1/	2.000	7.00	/.24	/.49	/.55	/.55	/.00	7.02	/.05
18	3.000	7.17	7.35	7.61	7.66	7.66	7.70	7.71	7.72
19	4.000	7.24	7.42	7,68	7.74	7.74	7.77	7.78	7,79
20	5,000	7 20	7 47	7 70	7 77	7 77	7 01	7 00	7 00
20	5.000	1.28	/.4/	1.12	/.//	1.11	/.81	/.82	/.83
21	7.500	7.37	7.54	7.78	7.83	7.84	7.88	7.90	7.90
22	10,000	7 39	7 57	7 80	7 85	7 85	7 89	7 91	7 93
	10.000		7.27	7.00	7.05	7.05	7.05	7.51	7.55
23	-1.000	6.98	/.15	/.36	/.40	/.41	7.44	/.46	7.46
Distance	Bar Results								
JIStance	0.010	40.040	27 404	22.025	17 007	47 706	14 007	40.476	10 701
1	0.010	46.016	37.406	22.925	1/.887	1/./26	14.307	12.1/6	10.704
2	0.020	45.752	37.180	22.760	17.823	17.653	14.031	12.035	10.512
3	0 030	45 026	36 646	22 621	18 1/5	17 020	13 627	12 025	10 144
5	0.050	45.020	50.040	22.031	10.145	17.950	13.05/	12.035	10.144
4	0.040	45.332	36.454	22.111	18.255	17.969	13.974	11.773	10.414
5	0.050	45.462	36.744	22.170	18.071	17.709	14.133	11.776	10.559
2	0.075	42 002	25 700	21 000	17 050	17 622	12 720	11.000	10, 202
0	0.0/5	45.885	55.729	21.900	1/.050	17.052	13./30	11.900	10.562
7	0.100	44.052	35.322	21.157	17.688	17.407	13.808	11.501	10.479
8	0.150	44.626	36.038	21.526	17.573	17.222	13,995	11.707	10.644
č	0.200	46.000	27.400	22.023	10 704	10 400	14.040	12.242	14 070
9	0.200	46.096	37.196	22.397	18./24	18.400	14.843	12.343	11.2/8
10	0.250	48.156	38.770	23.755	20.087	19.811	15.718	13.563	11.878
11	0 300	50 242	49 375	25 765	21 331	21 002	16 493	14 621	12 416
11	0.000	50.242	40.075	25.705	21.551	21.092	10.495	14.021	12.410
17	u //uu	LX 830	/// 951	78 8/6	73 331	73 001	12 072	16 1/10	1/1 318

Figure 2.5. Screenshot of HAZ-45 *-UHSoutput.txt. HAZ-45 sample file, Uniform Hazard Spectra Table.

Deaggregation Results for Spectral Period: 0.010												
Epsilon Bin Range: -20.000 29.600												
Hazard Level: AEP RP (yr)												
0.01966113	3 50.8	862										
Ground Motio	Ground Motion Level = 0.06990											
		5.00 - 5.50	5.50 - 6.00	6.00 - 6.50	6.50 - 7.00	7.00 - 7.50	7.50 - 8.00	8.00 - 8.50	8.50 - 9.60			
0.000	5.000	0.1323E-01	0.5651E-02	0.2191E-02	0.1848E-02	0.7242E-03	0.4552E-04	0.0000E+00	0.0000E+00			
5.000	10.000	0.1908E-01	0.1413E-01	0.6560E-02	0.1681E-02	0.3943E-03	0.6351E-05	0.0000E+00	0.0000E+00			
10.000	20.000	0.6449E-01	0.4972E-01	0.1970E-01	0.8161E-02	0.6859E-02	0.2873E-01	0.4450E-02	0.0000E+00			
20.000	30.000	0.4219E-01	0.3778E-01	0.4599E-01	0.1852E-01	0.1991E-01	0.1359E-02	0.0000E+00	0.0000E+00			
30.000	50.000	0.2821E-01	0.4751E-01	0.3584E-01	0.1369E-01	0.8492E-02	0.3291E-02	0.0000E+00	0.0000E+00			
50.000	75.000	0.8752E-02	0.2412E-01	0.4055E-01	0.3013E-01	0.3030E-01	0.8676E-01	0.6173E-01	0.1414E-04			
75.000	100.000	0.1494E-02	0.6011E-02	0.2352E-01	0.1694E-01	0.2072E-01	0.3567E-01	0.1363E-02	0.0000E+00			
100.000	125.000	0.1874E-03	0.1074E-02	0.4328E-02	0.8853E-02	0.1028E-01	0.1321E-01	0.1313E-03	0.0000E+00			
125.000	150.000	0.2270E-04	0.1595E-03	0.8959E-03	0.2614E-02	0.7506E-02	0.7538E-02	0.1103E-03	0.0000E+00			
150.000	175.000	0.2456E-05	0.2437E-04	0.1365E-03	0.4897E-03	0.1247E-02	0.1207E-02	0.1789E-04	0.0000E+00			
175.000	200.000	0.2553E-06	0.3187E-05	0.2449E-04	0.7432E-04	0.5576E-03	0.1547E-03	0.6073E-05	0.0000E+00			
200.000	300.000	0.0000E+00	0.8025E-06	0.5975E-05	0.3364E-04	0.3336E-03	0.1547E-03	0.1406E-04	0.0000E+00			
300.000	800.400	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.2039E-05	0.7290E-04			

Figure 2.6. Screenshot of HAZ-45 *-UHSoutput.txt. HAZ-45 sample file, Deaggregation Data Table

2.3 Data Collection: Combining All Results

In this first phase of data processing, the individual HAZ-45 ASCII files were read line by line in Python, interpreted, and saved to lists, numpy arrays and dictionaries in HDF5 files. In this first processing steps the data are grouped by output type:

- Hazard Curves (out3)
- Uniform-Hazard Spectra (UHS-out)
- Deaggregation Data (UHS-out)
- Ground-Motion Model Hazard Curves (out7)
- Directivity-Model Hazard Curves (out7)
- Fault-Source Hazard Curves (out6)

These data were processed for all sites, site classes, and directivity models.

The data for each output set is stored in the hierarchical manner represented by the graphic in Figure 2.7, depending on the type of data being stored. The first level of the stored data is the site label. To keep the data files at a manageable size, the HDF5 files were broken down into 78 files with each containing 250 sites each, except for the last file. The filenames were defined so that the user can easily identify, or compute, which file contained a particular site. For example, the hazard-curve file for the first set of sites is named:

 $SourceHazardData_SourceHazard_250 sitesInFile_Site00001 toSite00250.hdf5$

Figure 2.7. Graphic representation of HDF5 file for State-Wide PSHA

2.4 Data Post-Processing: Computing Derivative Values

Once the HAZ-45 output data was collected into HDF5 that were accessible programmatically, these data were post-processed to compute derivative values, such as the directivity-amplification factor: the ratio between the spectral acceleration considering directivity and that of not considering directivity. This post-processing was performed on the weighted-average directivity model as well as the individual directivity models. This directivity-amplification factor was computed for both the Uniform-Hazard Spectra and the Hazard Curves. Please note that the directivity-amplification factor was computed only for the return-period range for which it was validated in the PSHA study: for the return periods given in Table 2.2.

As was presented in the companion reports, with the exception of a particular region, the PSHA was performed for all sites only for the case of Vs30 = 760 m/s. As a result, the directivity-amplification factor was computed for all sites only for the case of Vs30=760 m/s. This ratio was then used to compute the directivity-based Uniform-Hazard Spectra PSA values at all sites for Vs30 other than 760 m/s. In this calculation, a lower bound of 1.0 was imposed on the directivity-amplification factor.

For completeness, the Vs30-specific directivity-amplification factor was also computed for the sites where the directivity-based PSHA was performed at different Vs30s.

2.5 Site-Specific Data Plots

A series of curves were plotted for each site and Vs30. Hazard Curves (annual probability of exceedance vs. amplitude, one curve per spectral period) and Uniform-Hazard Spectra (amplitude vs. spectral period, one curve per return period) were plotted for the following quantities (amplitudes):

- PSA with no directivity
- PSA with weighted directivity model
- Directivity-Amplification Factor (with unity lower bound)
- Directivity-Amplification Factor with no lower bound.

Deaggregation curves were also plotted for each site, Vs30, spectral period, and return period. These plots, however, were produced only for the case of no directivity.

2.6 Geographic-Distribution Tables & Maps: Grouping Data by Metric

To quantify the geometric distribution of the different quantities, such as PSA with and without directivity, as well as the directivity-amplification factor, the data were regrouped by quantity instead of site. Grouping the data in this manner enables the generation of maps where the data may be overlain with geographic features as well as geographically-distributed systems, such as seismic-fault systems and pipelines.

The quantities contained in these data are the PSA with and without directivity, as well as the directivity amplification factors, for both the weighted-average directivity model and the individual directivity models. One file is generated for each combination of Vs30, Spectral Period, and Return Period.

The data were produced in three different formats:

- 1. Geographic-distribution tables. These tables were generated in both comma-separated format (.CSV) and in HDF5 files, for ease of access. Individual CSV files can be uploaded directly to MS Excel and plotted using their 3D Maps add-on.
- 2. Geographic-distribution map images in JPG format. The individual-site quantities are displayed via colored circles. These images, such as the one shown in Figure XXX, are high-resolution images that can be included in a report. The UCERF-3 Faults are also shown in these maps.
- 3. Interactive geographic-distribution maps in HTML format. The individual-site quantities are displayed via colored circles. The UCERF-3 faults, as well as the portion of the California Natural Gas Pipeline provided to the researchers by the CEC, are included in these maps. These maps have the following capabilities:
 - a. Zoom in/out of figure.
 - b. Click on a site to display additional quantities, such as Hazard Curves and Uniform-Hazard Spectra
 - c. Visualize UCERF-3 sources (turn on/off).
 - d. Click on a UCERF-3 fault line to display properties of that fault segment.
 - e. Visualize California Natural Gas Pipeline (turn on/off).
 - f. Click on a pipeline segment for additional data on the segment.

These interactive maps, and their supporting data, are stored in an AWS server for ease of access via a web portal.

2.7 Interactive Geographic-Distribution Maps

While static maps in .jpg format are useful for publication, an interactive map allows you to visualize more data at different levels of detail. Interactive geographic distribution maps (in HTML format) were produced for the Uniform-Hazard Spectra Values: PSA with and without directivity, as well as the Directivity-Amplification Factor. The amplification factors for the individual directivity models were also mapped. These maps were made available via a web server.

3 Datasets: Site Data

This Chapter presents the different datasets that were produced from post-processing of the PSHA. Different users may be interested in accessing the data at different levels. The data are either stored in csv files or in HDF5 binary files. Because HDF5 is a hierarchical data format, the file content becomes self-documenting. A sample of each file is provided in Appendix A.

To access the HDF5 the user can open the file in any language that provides access to such files (e.g., python, R, Matlab) and query the keys, attributes and values at each level. The commands used to perform these queries are interpreter-dependent but are equivalent. To manage the size of the HDF5 files, data that is grouped by site was broken up into 78 files with at most 250 sites in each file. The filename indicates the type of data stored in the file as well as the number of sites and the first and last site in that file. For example, SourceHazardData_SourceHazard_250sitesInFile_Site00001toSite00250.HDF5 contains data about hazard sources for 250 sites, starting with Site00001 and ending with Site00250.

3.1 Hazard-Curve Data: Initial Collection and Processing (.out3 output)

This dataset contains the first level of output from the PSHA by collecting all the PSHA-analysis *.out3 output for all sites and VS30s. The hierarchical data are grouped by:

- 1. Site Label (Site00001-Site19316)
- 2. Vs30 (Vs180-Vs1100 + Vs180_Dir-Vs1100_Dir, where applicable)
- 3. Spectral Period (PGV,0.01-10sec)

For each of the above cases, the values for each amplitude in "AmpList" is tabulated for the individual fault cases (presented in companion report), as well as the weighted annual rate of exceedance (Wt_Total_Events_per_yr), Poisson Probability, etc., as shown in Table 11.1.

3.2 Hazard-Curve Data: Hazard Levels Only (.out3 output)

This dataset is a subset of the Hazard-Curve Data. It only contains the hazard levels (PSA) used for each case, as shown in Table 11.2. These data are used in processing the directivity model data because the hazard levels are not output with the .out6 data.

3.3 Hazard-Curve Data: Directivity Amplification Factor (.out3 output)

This dataset uses the data for the case of no directivity and directivity at each Vs30 where directivity was considered in the PSHA and computes the directivity-amplification factor, as shown in Table 11.3. This ratio is computed by interpolating the without- and with-directivity cases at the user-specified return periods: Return Periods (yr)

['50.862','99.499','474.561','949.118','999.500','2474.911','5000.000','10000.000']. Two sets of directivity-amplification factors are provided: with and without a unity lower bound.

For each case (SiteLabel, Vs30, and Spectral Period) you have the Hazard Curves (annual rate of exceedance vs amplitude) for the following cases:

- No-Directivity PSA (annual rates computed in the No-Directivity PSHA)
- For each Vs30 where directivity effects were considered (all sites have it for VS760, some also for other VS30s):
 - Directivity PSA (annual rates used in the Directivity PSHA)
 - No-Directivity PSA (annual rates used in the Directivity PSHA)
 - Directivity-Amplification Factor with a lower bound of 1.0. (At the user-defined annual rates)
 - Directivity-Amplification Factor with no lower bound (at the user-defined annual rates)

It is worth noting that Site15022 is one of the sites for which a directivity-based PSHA was performed at all VS30s. As a result, as shown in the contents of Table 11.3, for the case of VS1100 two directivity models are used: one is based on the directivity-based PSHA at **VS1100** and the other is based on the directivity-based PSHA at **VS760**.

3.4 Hazard-Curve Data: All, No-Directivity PSA, With-Directivity PSA, and Directivity-Amplification Factors at all Sites, VS30s, and Periods (.out3 output)

This dataset combines the data for the case of no directivity and directivity all Vs30 cases, as shown in Table 11.4. For the Vs30 cases where directivity was not considered in the PSHA, the With-Directivity PSA was computed by multiplying the No-Directivity PSA with the Directivity-Amplification Factor computed for VS760 (with a lower bound of 1.0). For periods where the directivity-effects were not considered, an amplification factor of 1.0 was used.

3.5 Uniform-Hazard Spectra Data: Initial Collection and Processing (*UHSoutput.txt output)

This dataset contains the first level of output from the PSHA by collecting all the PSHA-analysis *UHSoutput.txt output related to the UHS for all sites and VS30s. The hierarchical data are grouped by:

• SiteLabel (Site00001-Site19316)

Vs30 (Vs180-Vs1100 + Vs180_Dir-Vs1100_Dir, where applicable)

• Return Period (50-10,000yr)

This dataset contains all data pertinent to a Uniform-Hazard Spectrum, as shown in Table 11.5.

3.6 Uniform-Hazard Spectra Data: Deaggregation Data (*UHSoutput.txt output)

This dataset contains the first level of output from the PSHA by collecting all the PSHA-analysis *UHSoutput.txt output related to deaggregation for all sites and VS30s. The hierarchical data are grouped by:

- o SiteLabel (Site00001-Site19316)
 - Vs30 (Vs180-Vs1100 + Vs180_Dir-Vs1100_Dir, where applicable)
 - Spectral Period (0.01-10sec, PGV)
 - Return Period (50-10,000yr)

This dataset contains all data pertinent to Deaggregation, as shown in Table 11.6.

3.7 Uniform-Hazard Spectra Data: Directivity Amplification Factor (*UHSoutput.txt output)

This dataset uses the data for the case of no directivity and directivity at each Vs30 where directivity was considered in the PSHA and computes the directivity-amplification factor, as shown in Table 11.3. Because the UHS for the two cases correspond to the same return periods, the directivity-amplification factor was simply computed by taking the ratio of the two PSA at the same return period and spectral period. Two sets of directivity-amplification factors are provided: with and without a unity lower bound.

For each case where directivity was considered (SiteLabel, Vs30_directivity, and Return Period) you have the Uniform-Hazard Spectra (PSA vs spectral period) for the following cases:

• Directivity-Amplification Factor with a lower bound of 1.0. (At the user-defined annual rates)

• Directivity-Amplification Factor with no lower bound (at the user-defined annual rates) It is worth noting that Site15022 is one of the sites for which a directivity-based PSHA was performed at all VS30s, as shown in the contents of Table 11.7.

3.8 Uniform-Hazard Spectra Data: All -- No-Directivity PSA, With-Directivity PSA, and Directivity-Amplification Factors at all Sites, VS30s, and Periods (*UHSoutput.txt output)

This dataset combines the data for the case of no directivity and directivity all Vs30 cases, as shown in **Table 11.8**. For the Vs30 cases where directivity was not considered in the PSHA, the With-Directivity PSA was computed by multiplying the No-Directivity PSA with the Directivity-Amplification Factor computed for VS760 (with a lower bound of 1.0). For periods where the directivity-effects were not considered, an amplification factor of 1.0 was used.

- The data are grouped by:
 - SiteLabel
 - Vs30
 - Return Period

For each case the data are grouped into two parts:

- Directivity
 - For each Vs30 for directivity (all sites have VS760, some more)
 - PeriodList Spectral Periods
 - DirectivityRatioList: Directivity-Amplification Factor with a 1.0 lower bound
 - DirectivityRatioList_noLB: Directivity-Amplification Factor with no lower bound
 - UHSDirectivity: PSA considering directivity
- o noDirectivity
 - UHSnoDirectivity: PSA NOT considering directivity

3.9 Deaggregation Data (*UHSoutput.txt output)

This dataset contains the remainder of the contents of the Uniform-Hazard Spectra data. For each Site and Vs30, it tabulates the contribution of Magnitude and Distance bins to the hazard at each Return Period and Spectral Period, as shown in Table 11.9. The deaggregation data yields very large files.

3.10 Ground-Motion-Model Hazard Curves (*.out6 data)

The HAZ-45 .out6 file contains the hazard-curve data for the individual ground-motion models. The .out6 file only contains the annual rate of exceedance for each model. These rates were then combined with the corresponding PSA amplitude given in the .out3 file for the directivity case.

This dataset is broken down into 78 files, each containing the data for 250 sites. The data are grouped by SiteLabel, Vs30, and Spectral Period. At each spectral period the hazard curves are tabulated by PSA (columns) and ground-motion model (rows), as shown in Table 11.10. The ground-motion models are identified by integer numbers that are defined in the hazard-analysis input.

3.11 Directivity-Model Hazard Curves (*.out6 data)

For the cases where directivity was included in the PSHA, the HAZ-45 .out6 file also contains the hazard-curve data for the individual directivity models considered, even if not used in computing the weighted average. The following directivity models were included in the output and are presented in the companion report:

- BS13
- BSS20
- CS13
- BS13_FaultNormal
- BS13_FaultParallel

The .out6 file only contains the annual rate of exceedance for each model. These rates were then combined with the corresponding PSA amplitude given in the .out3 file for the directivity case.

This dataset is broken down into 78 files, each containing the data for 250 sites. The data are grouped by SiteLabel, Vs30, and Spectral Period. At each spectral period the hazard curves are tabulated by PSA (columns) and directivity model (rows), as shown in Table 11.11Table 11.10. The ground-motion models are identified by integer numbers that are defined in the hazard-analysis input.

3.12 Directivity-Model PSA and Directivity-Amplification Factor Hazard Curves and Uniform-Hazard Spectra (*.out6 data)

The directivity-model PSA hazard curves were further processed to compute the hazard curves for the directivity-amplification factor. This quantity was computed by interpolating the spectralperiod-specific hazard curves of each ground-motion model at the return periods defined by Table 2.2. These values were divided by the corresponding PSA values (spectral period, return period) with no-directivity. These data were further regrouped to produce Uniform-Hazard Spectra: PSA or directivity-amplification factor vs Spectral Period at different return periods.

This dataset is broken down into 78 files, each containing the data for 250 sites. The data are grouped by SiteLabel and Vs30. For each case the data are grouped by Hazard Curves or Uniform-Hazard Spectra, as shown in Table 11.12.

3.13 Parent-Fault Hazard Data (*.out7 data)

In the .out7 file, HAZ-45 reports the hazard curve for each parent-fault source: the annual rate of exceedance for the individual fault sources at each PSA amplitude used in the PSHA, as well as the weighted total contribution of the fault sources. The minimum distance between the site and each fault source is also provided.

This dataset is broken down into 78 files, each containing the data for 250 sites. The data are grouped by SiteLabel, Vs30, and Spectral Period, as shown in Table 11.13. Each site has a unique number of fault sources – the representative one in Table 11.13 has 139, given by the size of the SourceList variable. Each site may also have a unique number of PSA values, given by the size of the AmpList variable shown in the table. As a result, the HazardData table is a table where the columns are defined by the AmpList and the rows are defined by the SourceList. The total rate of these fault sources is given by the variable Wt_Total_Events_per_yr_Parent. Please note that this is not the total annual rate of exceedance at a site, since it does not include other sources, such as the gridded seismicity.

3.14 Parent-Fault Hazard Ratio Data (*.out7 data)

The Parent-Fault Hazard data was further processed by computing the ratio of the annual rate of each fault source by the total the parent-fault sources (Wt_Total_Events_per_yr_Parent). This ratio is the partial contribution of each Parent Fault to the total contribution of the fault sources to the total hazard.

This dataset is broken down into 78 files, each containing the data for 250 sites. The data are grouped by SiteLabel, Vs30, and Spectral Period, as shown in Table 11.14.

4 Directivity-Based PSHA Results

4.1 Hazard Curves

Hazard Curves (annual frequency of exceedance vs amplitude for different spectral periods) were plotted for each Site and Vs30. Each plot contains the hazard curves for all spectral periods, including PGV. The total number of Hazard-Curve figures is a total of 183,977 figures (32GB). The following data were plotted as hazard curves:

- PSA with and without directivity using the Vs30=760 m/s directivity-amplification factor all sites (Figure 4.1)
- PSA with and without directivity using the Vs30-specific directivity-amplification factor select sites (Figure 4.2)
- Directivity-Amplification Factor with a 1.0 lower bound (Figure 4.3)
- Directivity-Amplification Factor with no lower bound (Figure 4.4)

While the range of the annual frequency of exceedance for the case of no-directivity PSA spans the same range as the PSHA, the range of the annual frequency of exceedance of the other cases only spans the range for which it was validated: between 50 and 10,000 yr return period. For all sites, the above quantities were computed using the directivity-based PSHA for the case of VS760, resulting in 9 plots per site, as shown in Table 4.1.

Additional hazard curves were plotted for the sites where a directivity-based PSHA was performed at VS30s other than 760m/s. These additional plots are included in the dataset and have the specifying label, resulting in a total of 24 plots per site. Site 15023 is used in the figures because it is one of these sites, as shown in Table 4.2.

As is seen in the figures, directivity effects were computed only for spectral periods at and above 0.5 seconds. The no-directivity case can be used for periods below this threshold (directivity-amplification factor = 1.0).

Table 4.1. Uniform-Hazard Spectra Plot Filenames: Representative site where PSHA with directivity was performed only at VS760

PSA	NHR3_California_DirectivityPSH_Site15018_Vs1100_Spectra.jpg
	NHR3_California_DirectivityPSH_Site15018_Vs180_Spectra.jpg
	NHR3_California_DirectivityPSH_Site15018_Vs300_Spectra.jpg
	NHR3_California_DirectivityPSH_Site15018_Vs400_Spectra.jpg
	NHR3_California_DirectivityPSH_Site15018_Vs500_Spectra.jpg
	NHR3_California_DirectivityPSH_Site15018_Vs760_Spectra.jpg
	NHR3_California_DirectivityPSH_Site15018_VsSS_Spectra.jpg
Directivity-	NHR3_California_DirectivityPSH_Site15018_Vs760_DirRatio.jpg
Amplification	NHR3_California_DirectivityPSH_Site15018_Vs760_DirRatioNoLB.jpg
Factor	

Table 4.2. Uniform-Hazard Spectra Plot Filenames: Representative site where PSHA with directivity was performed at all Vs30

PSA	NHR3_California_DirectivityPSH_Site15023_Vs1100_Spectra.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs1100_Spectra_Vs1100DirectivityRatio.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs180_Spectra.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs180_Spectra_Vs180DirectivityRatio.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs300_Spectra.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs300_Spectra_Vs300DirectivityRatio.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs400_Spectra.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs400_Spectra_Vs400DirectivityRatio.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs500_Spectra.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs500_Spectra_Vs500DirectivityRatio.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs760_Spectra.jpg
	NHR3_California_DirectivityPSH_Site15023_VsSS_Spectra.jpg
Directivity-	NHR3_California_DirectivityPSH_Site15023_Vs1100_DirRatio.jpg
Amplification	NHR3_California_DirectivityPSH_Site15023_Vs1100_DirRatioNoLB.jpg
Factor	NHR3_California_DirectivityPSH_Site15023_Vs180_DirRatio.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs180_DirRatioNoLB.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs300_DirRatio.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs300_DirRatioNoLB.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs400_DirRatio.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs400_DirRatioNoLB.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs500_DirRatio.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs500_DirRatioNoLB.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs760_DirRatio.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs760_DirRatioNoLB.jpg

Figure 4.1. NHR3_California_DirectivityPSH_Site15023_Vs300_HazardCurves.jpg

NHR3_California_DirectivityPSH_Site15023_Vs300_HazardCurves_Vs300DirectivityRatio.jpg

Figure 4.3. NHR3_California_DirectivityPSH_Site00020_Vs760_DirectivityRatio.jpg

Figure 4.4. NHR3_California_DirectivityPSH_Site00020_Vs760_DirectivityRatio_NoUnityLB.jpg

4.2 Uniform-Hazard Spectra

In a manner consistent with the hazard curves, the Uniform-Hazard Spectra (amplitude vs spectral period for different return periods) were plotted for each Site and Vs30. PGV was not plotted. The total number of Uniform-Hazard Spectra figures is a total of 183,977 figures (32GB). The following data were plotted as hazard curves:

- PSA with and without directivity using the VS760 directivity-amplification factor all sites (Figure 4.5)
- PSA with and without directivity using the Vs30-specific directivity-amplification factor select sites (Figure 4.6)
- Directivity-Amplification Factor with a 1.0 lower bound (Figure 4.7)
- Directivity-Amplification Factor with no lower bound (Figure 4.8)

For all sites, the above quantities were computed using the directivity-based PSHA for the case of VS760, resulting in 9 plots per site, as shown in Table 4.3.

Additional hazard curves were plotted for the sites where a directivity-based PSHA was performed at VS30s other than 760m/s. These additional plots are included in the dataset and have the specifying label, resulting in a total of 24 plots per site. Site 15023 is used in the figures because it is one of these sites, as shown in Table 4.4

As is seen in the figures, directivity effects were computed only for spectral periods at and above 0.5 seconds. The no-directivity case can be used for periods below this threshold (directivity-amplification factor = 1.0).

Table 4.3. Hazard-Curve Plot Filenames: Representative site where PSHA with directivity was performed only at VS760

PSA	NHR3_California_DirectivityPSH_Site15018_Vs1100_HazardCurves.jpg
	NHR3_California_DirectivityPSH_Site15018_Vs180_HazardCurves.jpg
	NHR3_California_DirectivityPSH_Site15018_Vs300_HazardCurves.jpg
	NHR3_California_DirectivityPSH_Site15018_Vs400_HazardCurves.jpg
	NHR3_California_DirectivityPSH_Site15018_Vs500_HazardCurves.jpg
	NHR3_California_DirectivityPSH_Site15018_Vs760_HazardCurves.jpg
	NHR3_California_DirectivityPSH_Site15018_VsSS_HazardCurves.jpg
Directivity-	NHR3_California_DirectivityPSH_Site15018_Vs760_DirectivityRatio.jpg
Amplification	NHR3_California_DirectivityPSH_Site15018_Vs760_DirectivityRatio_NoUnityLB.jpg
Factor	

Table 4.4. Hazard-Curve Plot Filenames: Representative site where PSHA with directivity was performed at all Vs30

PSA	NHR3_California_DirectivityPSH_Site15023_Vs1100_HazardCurves.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs1100_HazardCurves_Vs1100DirectivityRatio.j
	pg
	NHR3 California DirectivityPSH Site15023 Vs180 HazardCurves.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs180_HazardCurves_Vs180DirectivityRatio.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs300_HazardCurves.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs300_HazardCurves_Vs300DirectivityRatio.jpg
	NHR3 California DirectivityPSH Site15023 Vs400 HazardCurves.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs400_HazardCurves_Vs400DirectivityRatio.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs500_HazardCurves.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs500_HazardCurves_Vs500DirectivityRatio.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs760_HazardCurves.jpg
	NHR3_California_DirectivityPSH_Site15023_VsSS_HazardCurves.jpg
Directivity-	NHR3_California_DirectivityPSH_Site15023_Vs1100_DirectivityRatio.jpg
Amplificatio	NHR3_California_DirectivityPSH_Site15023_Vs1100_DirectivityRatio_NoUnityLB.jpg
n Factor	NHR3_California_DirectivityPSH_Site15023_Vs180_DirectivityRatio.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs180_DirectivityRatio_NoUnityLB.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs300_DirectivityRatio.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs300_DirectivityRatio_NoUnityLB.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs400_DirectivityRatio.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs400_DirectivityRatio_NoUnityLB.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs500_DirectivityRatio.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs500_DirectivityRatio_NoUnityLB.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs760_DirectivityRatio.jpg
	NHR3_California_DirectivityPSH_Site15023_Vs760_DirectivityRatio_NoUnityLB.jpg

Figure 4.5. NHR3_California_DirectivityPSH_Site15023_Vs300_Spectra.jpg

Figure 4.6. NHR3_California_DirectivityPSH_Site15023_Vs300_Spectra_Vs300DirectivityRatio.jpg

Figure 4.7. NHR3_California_DirectivityPSH_Site00020_Vs760_DirRatio.jpg

NHR3 California Directivity-Based Probabilistic Seismic Hazard, ©2022 Site00020 Vs760 UHS Directivity Amplification Factor (no LB

Figure 4.8. NHR3_California_DirectivityPSH_Site00020_Vs760_DirRatioNoLB.jpg

4.3 Deaggregation Data Plots

The deaggregation data is plotted in a single figure and is generated for each Site, Vs30 and Spectral Period. Each file contains 8 plots, one for each return period, as shown in Figure 4.9. Because one figure is generated for each site, oscillator period, and Vs30, the large dataset results in over 2 million files.

Figure 4.9. NHR3_California_DirectivityPSH_Site00004_Vs180_Deaggr_T0pt1.jpg

5 Geographic-Distribution Tables

To quantify the geometric distribution of the different quantities, such as PSA with and without directivity, as well as the directivity-amplification factor, the data were regrouped by quantity instead of site: a single quantity (column) is tabulated in a single file for all site (rows). Grouping the data in this manner enables the generation of maps where the data may be overlain with geographic features as well as geographically-distributed systems, such as seismic-fault systems and pipelines.

The quantities contained in these data are the PSA with and without directivity, as well as the directivity amplification factors, for both the weighted-average directivity model and the individual directivity models. One file was generated for each combination of Vs30, Spectral Period, and Return Period for each quantity.

There are two types of datasets in this group. The first group contains the entire hazard curve or uniform-hazard spectrum in a pair of cells. For the case of the Hazard Curves, one cell contains a list of annual rate of exceedance, the other contains a list of PSA values – one row per combination of SiteLabel (+Lat, Lon), Vs30, Vs30_Dir, and Spectral Period. For the case of Uniform-Hazard Spectra, one cell contains a list of Spectral Period, the other contains a list of PSA values – one row per combination of SiteLabel (+Lat, Lon), Vs30, Vs30_Dir, and Return Period. These datasets are presented in the first four sections of this chapter. These files are useful when the user is interested in searching for the entire hazard curve or UHS at all/select sites. This group of datasets contains a total of 29 files.

The second group of datasets is useful for ease of plotting the geographic distribution of a single datum: e.g. the directivity PSA at all sites for a particular Vs30, SpectralPeriod, and Return Period. As a result, this dataset contains over 9000 files.

5.1 Geographic-Distribution Tables – Hazard Curves

The geographic-distribution tables (.csv files) were generated from the processed Hazard-Curve data. Each table/file has the following content:

- SiteLabel
- Site Location: Site Latitude and Longitude
- VS30Case: site Vs30
- VS30Dir: Vs30 used for the directivity analysis. All sites have VS760, some sites have additional VS30s. This column does not exist for the base case of the No-Directivity case
- Period (s): Spectral period for Hazard Curve
- Quantity: Label for datum being reported in this table. This label is also repeated in the header of the data column. It is included in the row for completeness, in case different tables are concatenated. The Directivity-Amplification Factor was computed by taking

the ratio of the PSA with directivity divided by the PSA without directivity, both taken at the same annual rate

- AnnualRateOfExceedance (/yr): Bracketed list of N values of annual rate of exceedance. The PSHA output with and without directivity have the same amplitude and different rates. Because the directivity-amplification factor for the hazard curves is computed from the With-Directivity and No-Directivity PSA at the same annual rate (return period), the No-Directivity data was interpolated at the same annual rate as the analysis with Directivity and saved to a table/file.
- Datum: Bracketed list of N values being tabulated in this file. The header of this column specifies the quantity of the datum, it is different for each file.

The hazard-curve files are listed in Table 5.1. A sample of each file is also given within the table. Please note that the first period shown is 2 seconds: directivity was included in the PSHA for periods greater than or equal to 0.5sec only. This dataset contains 5 files.

Table 5.1.	Geographic-Distribution	Tables – Hazard Curves
------------	-------------------------	------------------------

a.	PSA	with	No E	Direct	ivitv						
•	NHR.	3_Calif	ornia	Direc	tivityP	SH_Haza	ardCurv	eTa	ble_AllSites_PSAg_l	NoDirectivity.csv	
	A	В	С	D	E		F		G	Н	
1	NHR3 Cal	ifornia Dire	ectivity-Ba	sed Prob	abilistic Se	ismic Hazard	Analysis				-
2	https://w	ww.risksci	ences.ucl	a.edu/nhr	3/cal-dire	ctivity-psha/					
3	Sitel abel	Latitude	Longitud	le Vs30Ca	se Period	s Quantity		Annua	alRateOfExceedance (/vr)	SA noDir (g)	
21	Site00001	32 35	-117	2 Vs1100	se renou	2 PSΔ (σ) No	Directivity	[3 387	70e-01 2 2530e-01 1 3870e-	1 0000e-03 1 6000e-03 2 6000e-	
21	Site00001	22.33	-117	2 Vc1100		2 PSA (g) No	Directivity	[3.307		1.00002-03,1.00002-03,2.00002-	
22	Site00001	. 52.55	117	2 1/-1100		3 PSA (g) NO	Directivity	[2.01]		1.0000e-03,1.0000e-03,2.0000e-	
23	Site00001	. 52.55	-117	2 1/-1100		4 PSA (g) NO	Disectivity	[1.330		1.0000e-03,1.0000e-03,2.0000e-	
24	Site00001	. 32.35	-117.	2 1/-1100		5 PSA (g) NO	Directivity	[9.794	0e-02,6.0200e-02,3.4370e-	1.0000e-03,1.8000e-03,2.8000e-	
25	Site00001	. 32.35	-11/.	.2 VS1100		7.5 PSA (g) No	Directivity	[1.045	00e-01,6.7560e-02,4.1050e-	5.0000e-04,8.0000e-04,1.3000e-	
26	Site00001	. 32.35	-11/	.2 Vs1100		10 PSA (g) No	Directivity	[6.770	00e-02,4.2800e-02,2.5730e-	5.0000e-04,8.0000e-04,1.3000e-	
27	Site00001	. 32.35	-117.	.2 Vs180		-1 PSA (g) No	Directivity	[1.278	30e+00,1.1270e+00,9.2690e- [:	1.0000e-01,1.6240e-01,2.6370e-	
b.	PSA	with	No E	Direct	ivity	 interp 	olated	at t	he same annual ra	ate as the With-Dir	ectivity case
٠	NHR.	3_Calif	ornia_	Direc	tivityP	SH_Haza	ardCurv	eTa	ble_AllSites_PSAg_l	NoDirectivity_DirRate	e.csv
	А	В	С	D	E	F	G		Н	1	
1	NHR3 Calif	ornia Direct	tivity-Base	d Probabi	listic Seism	ic Hazard Ana	lysis				
2	https://ww	w.riskscien	ces.ucla.e	edu/nhr3/	cal-directiv	vity-psha/					
3	SiteLabel	Latitude L	ongitude	Vs30Case	Vs30Dir	Period s Qu	antity		AnnualRateOfExceedance (/yr)	PSA noDir (g)	
21	Site00001	32.35	-117.2	Vs1100	Vs760	2 PS/	A (g) No Dire	ctivity	[1.9661e-02,1.0050e-02,2.1070e-	[1.1606e-02,1.7909e-02,4.7951e-	
22	Site00001	32.35	-117.2	Vs1100	Vs760	3 PS/	A (g) No Dire	ctivity	[1.9661e-02,1.0050e-02,2.1070e-	[7.4332e-03,1.1729e-02,3.2276e-	
23	Site00001	32.35	-117.2	Vs1100	Vs760	4 PS/	A (g) No Dire	, ctivity	[1.9661e-02,1.0050e-02,2.1070e-	[5.2882e-03,8.5073e-03,2.3992e-	
24	Site00001	32.35	-117.2	Vs1100	Vs760	5 PS/	A (g) No Dire	ctivity	[1.9661e-02,1.0050e-02,2.1070e-	[4.0374e-03.6.6227e-03.1.9210e-	
25	Site00001	32.35	-117.2	Vs1100	Vs760	7.5 PS	A (g) No Dire	ctivity	[1.9661e-02.1.0050e-02.2.1070e-	[2.4802e-03.4.2738e-03.1.2996e-	
26	Site00001	32.35	-117.2	Vs1100	Vs760	10 PS/	A (g) No Dire	ctivity	[1.9661e-02,1.0050e-02,2.1070e-	[1.6561e-03,2.9660e-03,9.5389e-	
27	Site00001	32.35	-117.2	Vs180	Vs760	-1 PS	A (g) No Dire	ctivity	[1.2780e+00.1.1270e+00.9.2690e-	[1.0000e-01.1.6240e-01.2.6370e-	
28	Site00001	32.35	-117.2	Vs180	Vs760	0.01 PS	A (g) No Dire	ctivity	[1.2170e+00.1.0730e+00.8.8630e-	[1.0000e-03.1.6000e-03.2.6000e-	
20	Site00001	22.25	117 2	Vc190	Vc760	0.02.05	(g) No Dire	ctivity	[1 2120a+00 1 0670a+00 8 8000a	[1 0000-02 1 6000-02 2 6000-	
c.	PSA	with	Direc	ctivity	y - W	eighted	l direct	ivit	y model		
•	NHR	3_Cali	fornia <u></u>	_Direc	ctivityF	PSH_Haz	ardCurv	veTa	ble_AllSites_PSAg_	WithDirectivity.csv	
	A	В	С	D	E	F	G		Н	1	
1	NHR3 Calif	ornia Direc	tivity-Base	d Probabi	listic Seism	ic Hazard Anal	ysis				
2	https://ww	vw.riskscier	nces.ucla.e	edu/nhr3/o	cal-directiv	ity-psha/					
3	SiteLabel	Latitude L	ongitude	Vs30Case	Vs30Dir	Period_s Qua	antity		AnnualRateOfExceedance (/yr)r	PSA_Dir (g)	_
21	Site00001	32.35	-117.2	Vs1100	Vs760	2 PSA	(g) With Dire	ectivity	[1.9661e-02,1.0050e-02,2.1070e-	[1.1670e-02,1.8122e-02,4.9884e-	
22	Site00001	32.35	-117.2	Vs1100	Vs760	3 PSA	(g) With Dir	ectivity	[1.9661e-02,1.0050e-02,2.1070e-	[7.4786e-03,1.1877e-02,3.3746e-	
23	Site00001	32.35	-117.2	Vs1100	Vs760	4 PSA	(g) With Dir	ectivity	[1.9661e-02,1.0050e-02,2.1070e-	[5.3184e-03,8.6106e-03,2.5100e-	
24	Site00001	32.35	-117.2	Vs1100	Vs760	5 PSA	(g) With Dir	ectivity	[1.9661e-02,1.0050e-02,2.1070e-	[4.0591e-03,6.6968e-03,2.0071e-	
25	Site00001	32.35	-117.2	Vs1100	Vs760	7.5 PSA	(g) With Dir	ectivity	[1.9661e-02,1.0050e-02,2.1070e-	[2.4917e-03,4.3162e-03,1.3484e-	
26	Site00001	32.35	-117.2	Vs1100	Vs760	10 PSA	(g) With Dir	ectivity	[1.9661e-02,1.0050e-02,2.1070e-	[1.6629e-03,2.9918e-03,9.8147e-	
27	Site00001	32.35	-117.2	Vs180	Vs760	-1 PSA	(g) With Dir	ectivity	[1.2780e+00,1.1270e+00,9.2690e	- [1.0000e-01,1.6240e-01,2.6370e-	
28	Site00001	32.35	-117.2	Vs180	Vs760	0.01 PSA	(g) With Dir	ectivity	[1.2170e+00,1.0730e+00,8.8630e	- [1.0000e-03,1.6000e-03,2.6000e-	

d.	Dire	ectivit	y-An	plifi	cation	Fact	or – Weighted	d directivity mode	1					
•	NHR3_California_DirectivityPSH_HazardCurveTable_AllSites_DirectivityAmpRatio.csv													
•	NHR3_California_DirectivityPSH_HazardCurveTable_AllSites_DirectivityAmpRatio_noLB.csv													
	А	В	С	D	E	F	G	Н	I.					
1	NHR3 Cali	fornia Dire	ctivity-Base	ed Probabi	ilistic Seism	ic Hazard	Analysis							
2	https://w	ww.riskscie	ences.ucla.	edu/nhr3/	cal-directiv	ity-psha/								
3	SiteLabel	Latitude	Longitude	Vs30Case	Vs30Dir	Period_s	Quantity	AnnualRateOfExceedance (/yr)	PSA_Dir/PSA_noDir Ratio					
21	Site00001	32.35	-117.2	Vs1100	Vs760	2	PSA_Dir/PSA_noDir Ratio	[1.9661e-02,1.0050e-02,2.1070e-	[1.0055e+00,1.0119e+00,1.040					
22	Site00001	32.35	-117.2	Vs1100	Vs760	З	B PSA_Dir/PSA_noDir Ratio	[1.9661e-02,1.0050e-02,2.1070e-	[1.0061e+00,1.0126e+00,1.045					
23	Site00001	32.35	-117.2	Vs1100	Vs760	4	PSA_Dir/PSA_noDir Ratio	[1.9661e-02,1.0050e-02,2.1070e-	[1.0057e+00,1.0121e+00,1.046					
24	Site00001	32.35	-117.2	Vs1100	Vs760	5	S PSA_Dir/PSA_noDir Ratio	[1.9661e-02,1.0050e-02,2.1070e-	[1.0054e+00,1.0112e+00,1.044					
25	Site00001	32.35	-117.2	Vs1100	Vs760	7.5	PSA_Dir/PSA_noDir Ratio	[1.9661e-02,1.0050e-02,2.1070e-	[1.0046e+00,1.0099e+00,1.037					
26	Site00001	32.35	-117.2	Vs1100	Vs760	10	PSA_Dir/PSA_noDir Ratio	[1.9661e-02,1.0050e-02,2.1070e-	[1.0041e+00,1.0087e+00,1.028					
27	Site00001	32.35	-117.2	Vs180	Vs760	-1	PSA_Dir/PSA_noDir Ratio	[1.2780e+00,1.1270e+00,9.2690e-	[1.0000e+00,1.0000e+00,1.000					

5.2 Geographic-Distribution Tables – Directivity-Model Hazard Curves

Tables of the geographic distribution of Directivity-Model-specific Hazard curves were generated in a manner similar to that of the PSHA hazard curves. In this case, one file was generated for each directivity model. Two sets of files were generated for each Directivity Model: one set tabulates the PSA values, the other the directivity-amplification factor, which was computed as the ratio between the PSA with directivity and PSA without directivity, evaluated at the same annual Spectral Period and annual rate of exceedance.

The files are listed in Table 5.2, along with a sample screenshot for each case. This dataset contains 10 files.

Table 5.2. Geographic-Distribution Tables - Directivity-Model Hazard Curves

a. PSA with Directivity – Individual Directivity Models

- NHR3_California_DirectivityPSH_HazardCurveTable_AllSites_DirectivityAmpRatio_DirModel_BS13.csv
- NHR3_California_DirectivityPSH_HazardCurveTable_AllSites_DirectivityAmpRatio_DirModel_BS13_Fault Normal.csv
- NHR3_California_DirectivityPSH_HazardCurveTable_AllSites_DirectivityAmpRatio_DirModel_BS13_Fault Parallel.csv
- NHR3_California_DirectivityPSH_HazardCurveTable_AllSites_DirectivityAmpRatio_DirModel_BSS20.csv
- NHR3_California_DirectivityPSH_HazardCurveTable_AllSites_DirectivityAmpRatio_DirModel_CS13.csv

	А	В	С	D	E	F	G	н	I. I.
1	NHR3 Cali	fornia Dire	ctivity-Base	ed Probabi	listic Seisr	nic Hazard /	Analysis		
2	https://w	ww.riskscie	ences.ucla.	edu/nhr3/	cal-directi	vity-psha/			
3	SiteLabel	Latitude	Longitude	Vs30Case	Vs30_Dir	R Period (s)	Quantity	AnnualRateOfExceedance	PSA_Dir (g)BS13
4	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Di	r 0.5	PSA_g_WithDirectivity b'BS13'	[1.1900e+00,9.9280e-	[1.0000e-03,1.7000e-
5	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Di	r 0.75	PSA_g_WithDirectivity b'BS13'	[1.0400e+00,8.3940e-	[1.0000e-03,1.6000e-
6	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Di	r 1	PSA_g_WithDirectivity b'BS13'	[8.6950e-01,6.6480e-	[1.0000e-03,1.6000e-
7	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Di	r 1.5	PSA_g_WithDirectivity b'BS13'	[6.1130e-01,4.3750e-	[1.0000e-03,1.6000e-
8	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Di	r 2	PSA_g_WithDirectivity b'BS13'	[4.3460e-01,2.9990e-	[1.0000e-03,1.6000e-
9	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Di	r 3	PSA_g_WithDirectivity b'BS13'	[2.5180e-01,1.6680e-	[1.0000e-03,1.6000e-
10	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Di	r 4	PSA_g_WithDirectivity b'BS13'	[1.6740e-01,1.0730e-	[1.0000e-03,1.6000e-
11	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Di	r 5	PSA_g_WithDirectivity b'BS13'	[1.1750e-01,7.3380e-	[1.0000e-03,1.6000e-

b. Directivity-Amplification Factor – Individual Directivity Models

- NHR3_California_DirectivityPSH_HazardCurveTable_AllSites_PSAg_WithDirectivity_DirModel_BS13.csv
- NHR3_California_DirectivityPSH_HazardCurveTable_AllSites_PSAg_WithDirectivity_DirModel_BS13_Fau ltNormal.csv
- NHR3_California_DirectivityPSH_HazardCurveTable_AllSites_PSAg_WithDirectivity_DirModel_BS13_Fau ltParallel.csv
- NHR3_California_DirectivityPSH_HazardCurveTable_AllSites_PSAg_WithDirectivity_DirModel_BSS20.cs
 v
- NHR3_California_DirectivityPSH_HazardCurveTable_AllSites_PSAg_WithDirectivity_DirModel_CS13.csv
 A B C D E F G H I

1	NHR3 Cali	fornia Dire	ctivity-Base	ed Probabi								
2	https://ww	ww.riskscie	ences.ucla.	edu/nhr3/	cal-directivity-p	sha/						
3	SiteLabel	Latitude	Longitude	Vs30Case	Vs30_DirRatio	Period (s)	Quantity	1			AnnualRateOfExceedance (/yr)	PSA_Dir/PSA_noDir Ratio
4	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Dir	0.5	PSA_Dir/	PSA_n	oDir Ratio	b'BS13'	[1.1900e+00,9.9280e-	[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
5	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Dir	0.75	PSA_Dir/	PSA_n	oDir Ratio	b'BS13'	[1.0400e+00,8.3940e-	[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
6	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Dir	1	PSA_Dir/	PSA_n	oDir Ratio	b'BS13'	[8.6950e-01,6.6480e-	[1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
7	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Dir	1.5	PSA_Dir/	PSA_n	oDir Ratio	b'BS13'	[6.1130e-01,4.3750e-	[1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
8	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Dir	2	PSA_Dir/	PSA_n	oDir Ratio	b'BS13'	[4.3460e-01,2.9990e-	[1.0, 1.0, 1.0, 1.0, 1.0001
9	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Dir	3	PSA_Dir/	PSA_n	oDir Ratio	b'BS13'	[2.5180e-01,1.6680e-	[1.0, 1.0, 1.0, 1.000151, 1
10	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Dir	4	PSA_Dir/	PSA_n	oDir Ratio	b'BS13'	[1.6740e-01,1.0730e-	[1.0, 1.000984, 1.000146
11	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Dir	5	PSA_Dir/	PSA_n	oDir Ratio	b'BS13'	[1.1750e-01,7.3380e-	[1.0, 1.0, 1.000209, 1.000
12	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Dir	7.5	PSA_Dir/	PSA_n	oDir Ratio	b'BS13'	[1.1860e-01,7.7320e-	[1.0, 1.000142, 1.0, 1.0, 1
13	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Dir	10	PSA_Dir/	PSA_n	oDir Ratio	b'BS13'	[7.5810e-02,4.8120e-	[1.0, 1.0, 1.00033, 1.0010

5.3 Geographic-Distribution Tables – Uniform-Hazard Spectra

Tables of the geographic distribution of Uniform-Hazard Spectra were generated in a manner like that of the PSHA hazard curves. Two sets of files were generated: one set tabulates the PSA values, the other the directivity-amplification factor, which was computed as the ratio between the PSA with directivity and that without directivity, evaluated at the same annual rate of exceedance. Each table/file has the following content:

- SiteLabel
- Site Location: Site Latitude and Longitude
- VS30Case: site Vs30
- VS30Dir: Vs30 used for the directivity analysis. All sites have VS760, some sites have additional VS30s. This column does not exist for the base case of the No-Directivity case
- ReturnPeriod: Return Period corresponding to UHS
- Quantity: Label for datum being reported in this table. This label is also repeated in the header of the data column. It is included in the row for completeness in case different tables are concatenated. The Directivity-Amplification Factor was computed by taking the ratio of the PSA with directivity divided by the PSA without directivity, both taken at the same annual rate
- Period (s): Bracketed list of N values of Spectral Periods.
- Datum: Bracketed list of N values being tabulated in this file. The header of this column specifies the quantity of the datum, it is different for each file.

The tables are listed in Table 5.3, along with a sample screenshot for each case. This dataset contains 4 files.

Table 5.3. Geographic-Distribution Tables - Uniform-Hazard Spectra

a PSA with No Directivity	
NHR3 California DirectivityPSH SpectraTable AllSit	tes PSAg NoDirectivity csv
	H
1 NHR3 California Directivity-Based Prohabilistic Seismic Hazard Analysis	n
2 https://www.risksciences.ucla.edu/nbr2/cal-directivity-ncha/	
2 Sitel abol Latitude Longitude Vs20Case BeturnDevied (ur) Quantity Devied (c)	P(A, noDir g)
4 Site00001 23.25 117.2 Vol100 50 862 Uniform H 0.01.0.02.0.03	PSA_10011 (g)
4 Sile00001 S2.S5 -117.2 VS1100 S0.862 Uniform H[0.01, 0.02, 0.03, 0.04	
5 Site00001 32.35 -117.2 V\$100 99.499 Oniform-H[0.01, 0.02, 0.03, 0.04	
6 Site00001 32.35 -117.2 V\$1100 474.561 Uniform-H[0.01, 0.02, 0.03, 0.04	
7 Site00001 32.35 -117.2 V\$1100 949.118 Uniform-H[0.01, 0.02, 0.03, 0.04	4, [0.28874, 0.298049, 0.342413, 0
8 Site00001 32.35 -117.2 V\$1100 999.5 Uniform-H[0.01, 0.02, 0.03, 0.04	4, [0.297499, 0.307241, 0.351899,
9 Site00001 32.35 -117.2 Vs1100 2474.911 Uniform-H 0.01, 0.02, 0.03, 0.04	4 , [0.467407, 0.485212, 0.563435,
10 Site00001 32.35 -117.2 Vs1100 5000 Uniform-H [0.01 , 0.02 , 0.03 , 0.04	4 , [0.624867, 0.648112, 0.756491,
11 Site00001 32 35 -117 2 Vc1100 10000 Uniform-H[0.01.0.02.0.03.0.0/	
b. PSA with Directivity – Weighted directivity m	nodel
 NHR3_California_DirectivityPSH_SpectraTable_AllSit 	tes_PSAg_WithDirectivity.csv
A B C D E F G	
1 NHR3 California Directivity-Based Probabilistic Seismic Hazard Analysis	
2 https://www.risksciences.ucla.edu/nhr3/cal-directivity-psha/	
3 SiteLabel Latitude Longitude Vs30Case Vs30_Dir ReturnPeriod (yr) Quantity	Period (s) PSA_Dir (g)
4 Site00001 32.35 -117.2 Vs1100 Vs760 50.862 Uniform-Hazard PSA (g) With Di	Directivity [0.01 , 0.02 , 0.03 , 0.04 , 0.05 [0.042029, 0.042828, 0.0477]
5 Site00001 32.35 -117.2 Vs1100 Vs760 99.499 Uniform-Hazard PSA (g) With Di	Virectivity [0.01 , 0.02 , 0.03 , 0.04 , 0.05 [0.067701, 0.069164, 0.0776
6 Site00001 32.35 -117.2 Vs1100 Vs760 474.561 Uniform-Hazard PSA (g) With Di	birectivity [0.01 , 0.02 , 0.03 , 0.04 , 0.05 [0.192077, 0.197572, 0.2244
7 Site00001 32.35 -117.2 Vs1100 Vs760 949.118 Uniform-Hazard PSA (g) With Di	Directivity [0.01 , 0.02 , 0.03 , 0.04 , 0.05 [0.28874, 0.298049, 0.34241]
8 Site00001 32.35 -117.2 Vs1100 Vs760 999.5 Uniform-Hazard PSA (g) With Di	Directivity [0.01 , 0.02 , 0.03 , 0.04 , 0.05 [0.297499, 0.307241, 0.3518]
9 Site00001 32.35 -117.2 Vs1100 Vs760 2474.911 Uniform-Hazard PSA (g) With Di	Directivity [0.01 , 0.02 , 0.03 , 0.04 , 0.05 [0.467407 , 0.485212 , 0.5634
10 Site00001 32.35 -117.2 Vs1100 Vs760 5000 Uniform-Hazard PSA (g) With Di	Directivity [0.01 , 0.02 , 0.03 , 0.04 , 0.05 [0.624867, 0.648112, 0.7564!
11 Cite00001 23 25 117 3 Vo1100 Vo760 10000 Uniform Hassed BCA (a) With Di	Negetivity [0.01 0.07 0.07 0.04 0.06 [0.001047 0.020026 0.0006]
c Directivity-Amplification Factor Weighted d	lirectivity model
c. Directivity-Ampinication Factor – Weighted d	
• NUD3 California DirectivityDSU SpectreTable AllSi	tos Directivity Amplification Patio cov
• MIK5_Camornia_DirectivityFSI1_SpectraTable_Ansi	ies_DirectivityAmphileationKatio.csv
NHR3 California DirectivityPSH SpectraTable AllSit	tes DirectivityAmplificationRatio noI B csv
- TTIK5_California_Directivity1511_5pectra1able_This	tes_Directivity/implificationRatio_noED.esv
A B C D E F G	H
2 https://www.rickscioncos.ucla.pdu/phr3/cal_directivity.pcha/	
3 Sitelabel Latitude Longitude Ve30Case Ve30 Dir ReturnPeriod (vr) Quantity	ind (s) PSA Dir/DSA poDir Ratio
4 Site00001 32.35 -117.2 Vs1100 Vs760 50.862 Directivity-Amplification Ratio [0.0	
5 Site00001 32.35 -117.2 Vs1100 Vs760 99.499 Directivity-Amplification Ratio [0.0	01,0.02,0.03,0.04,0.05 [1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0]
6 Site00001 32.35 -117.2 Vs1100 Vs760 474.561 Directivity-Amplification Ratio [0.0	01.0.02.0.03.0.04.0.05 [1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0
7 Site00001 32.35 -117.2 Vs1100 Vs760 949.118 Directivity-Amplification Ratio [0.0	01, 0.02, 0.03, 0.04, 0.05 [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
8 Site00001 32.35 -117.2 Vs1100 Vs760 999.5 Directivity-Amplification Ratio [0.0	01, 0.02, 0.03, 0.04, 0.05 [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
9 Site00001 32.35 -117.2 Vs1100 Vs760 2474.911 Directivity-Amplification Ratio [0.0	01,0.02,0.03,0.04,0.05 [1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.
10 Site00001 32.35 -117.2 Vs1100 Vs760 5000 Directivity-Amplification Ratio [0.0	01, 0.02, 0.03, 0.04, 0.05 [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.
11 Site00001 32.35 -117.2 Vs1100 Vs760 10000 Directivity-Amplification Ratio [0.0	01, 0.02, 0.03, 0.04, 0.05 [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
13 Standon 23 35 117 3 V-190 V-760 E0 063 Disatistic Amelification Datis [0.6	01 002 002 004 005 [10 10 10 10 10 10 10 1

5.4 Geographic-Distribution Tables – Directivity-Model Uniform-Hazard Spectra

Tables of the geographic distribution of Directivity-Model-specific Uniform-Hazard Spectra were generated in a manner similar to that of the Directivity-Model PSHA hazard curves. Two sets of files were generated: one set tabulates the PSA values, the other the directivity-amplification factor, which was computed as the ratio between the PSA with directivity and that without directivity, evaluated at the same Spectral Period and Return Period.

The files are listed in Table 5.4, along with a sample screenshot for each case. This dataset contains 10 files.

Table 5.4. Geographic-Distribution Tables - Directivity-Model Uniform-Hazard Hazard Spectra

c. PSA with Directivity – Individual Directivity Models

- NHR3_California_DirectivityPSH_SpectraTable_AllSites_PSAg_WithDirectivity_DirModel_BS13.csv
- NHR3_California_DirectivityPSH_SpectraTable_AllSites_PSAg_WithDirectivity_DirModel_BS13_FaultNo rmal.csv
- NHR3_California_DirectivityPSH_SpectraTable_AllSites_PSAg_WithDirectivity_DirModel_BS13_FaultPa rallel.csv
- NHR3_California_DirectivityPSH_SpectraTable_AllSites_PSAg_WithDirectivity_DirModel_BSS20.csv
- NHR3_California_DirectivityPSH_SpectraTable_AllSites_PSAg_WithDirectivity_DirModel_CS13.csv

	А	В	С	D	E	F	G	Н	I.		
1	NHR3 Cali	fornia Dire	ctivity-Base	ed Probabi	listic Seisn	nic Hazard /	Analysis				
2	https://ww	ttps://www.risksciences.ucla.edu/nhr3/cal-directivity-psha/									
З	SiteLabel	Latitude	Longitude	Vs30Case	Vs30_Dirl	R Period (s)	Quantity	AnnualRateOfExceedance	PSA_Dir (g)BS13		
4	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Di	r 0.5	PSA_g_WithDirectivity b'BS13'	[1.1900e+00,9.9280e-	[1.0000e-03,1.7000e-		
5	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Di	r 0.75	PSA_g_WithDirectivity b'BS13'	[1.0400e+00,8.3940e-	[1.0000e-03,1.6000e-		
6	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Di	r 1	PSA_g_WithDirectivity b'BS13'	[8.6950e-01,6.6480e-	[1.0000e-03,1.6000e-		
7	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Di	r 1.5	PSA_g_WithDirectivity b'BS13'	[6.1130e-01,4.3750e-	[1.0000e-03,1.6000e-		
8	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Di	r 2	PSA_g_WithDirectivity b'BS13'	[4.3460e-01,2.9990e-	[1.0000e-03,1.6000e-		
9	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Di	r 3	PSA_g_WithDirectivity b'BS13'	[2.5180e-01,1.6680e-	[1.0000e-03,1.6000e-		
10	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Di	r 4	PSA_g_WithDirectivity b'BS13'	[1.6740e-01,1.0730e-	[1.0000e-03,1.6000e-		
11	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Di	r 5	PSA_g_WithDirectivity b'BS13'	[1.1750e-01,7.3380e-	[1.0000e-03,1.6000e-		

- d. Directivity-Amplification Factor Individual Directivity Models
- NHR3_California_DirectivityPSH_SpectraTable_AllSites_DirectivityAmpRatio_DirModel_BS13.csv
- NHR3_California_DirectivityPSH_SpectraTable_AllSites_DirectivityAmpRatio_DirModel_BS13_FaultNor mal.csv
- NHR3_California_DirectivityPSH_SpectraTable_AllSites_DirectivityAmpRatio_DirModel_BS13_FaultPara llel.csv
- NHR3_California_DirectivityPSH_SpectraTable_AllSites_DirectivityAmpRatio_DirModel_BSS20.csv
- NHR3 California DirectivityPSH SpectraTable AllSites DirectivityAmpRatio DirModel CS13.csv

	А	В	С	D	E	F	G	Н	1
1	NHR3 Cali	fornia Dire	ctivity-Base	ed Probabi	listic Seismic H	azard Anal	/sis		
2	https://ww	ww.riskscie	ences.ucla.	edu/nhr3/	cal-directivity-	psha/			
3	SiteLabel	Latitude	Longitude	Vs30Case	Vs30_DirRatio	Period (s)	Quantity	AnnualRateOfExceedance (/yr)	PSA_Dir/PSA_noDir Ratie
4	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Dir	0.5	PSA_Dir/PSA_noDir Ratio b'BS13'	[1.1900e+00,9.9280e-	[1.0, 1.0, 1.0, 1.0, 1.0, 1.0
5	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Dir	0.75	PSA_Dir/PSA_noDir Ratio b'BS13'	[1.0400e+00,8.3940e-	[1.0, 1.0, 1.0, 1.0, 1.0, 1.0
6	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Dir	1	PSA_Dir/PSA_noDir Ratio b'BS13'	[8.6950e-01,6.6480e-	[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
7	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Dir	1.5	PSA_Dir/PSA_noDir Ratio b'BS13'	[6.1130e-01,4.3750e-	[1.0, 1.0, 1.0, 1.0, 1.0, 1.0
8	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Dir	2	PSA_Dir/PSA_noDir Ratio b'BS13'	[4.3460e-01,2.9990e-	[1.0, 1.0, 1.0, 1.0, 1.0001
9	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Dir	3	PSA_Dir/PSA_noDir Ratio b'BS13'	[2.5180e-01,1.6680e-	[1.0, 1.0, 1.0, 1.000151, 1
10	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Dir	4	PSA_Dir/PSA_noDir Ratio b'BS13'	[1.6740e-01,1.0730e-	[1.0, 1.000984, 1.000146
11	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Dir	5	PSA_Dir/PSA_noDir Ratio b'BS13'	[1.1750e-01,7.3380e-	[1.0, 1.0, 1.000209, 1.000
12	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Dir	7.5	PSA_Dir/PSA_noDir Ratio b'BS13'	[1.1860e-01,7.7320e-	[1.0, 1.000142, 1.0, 1.0, 1
13	Site00001	32.35	-117.2	Vs760_Dir	Vs760_Dir	10	PSA_Dir/PSA_noDir Ratio b'BS13'	[7.5810e-02,4.8120e-	[1.0, 1.0, 1.00033, 1.0010

6 Geographic-Distribution Maps

The geographic distribution of data and intensity measures was plotted on a set of 9,813 maps in jpg format. Colormaps were used to represent each quantity. The following data were mapped:

- Site ID (Figure 1.1)
- Site-Specific Vs30 (Figure 1.4)
- Site- Specific Z1.0 (Figure 1.5)
- Site- Specific Z2.5 (Figure 1.6)
- UCERF-3 Fault Sources (Figure 1.2)

At each Vs30, Return Period, and Oscillator period, the following intensity measures were mapped, a sample figure is provided for each below:

- PSA with No Directivity (Figure 6.1)
- PSA with Directivity, Weighted Model, Vs-760 directivity-adjustment factor (Figure 6.2)
- PSA with Directivity, Weighted Model, Vs30 directivity-adjustment factor (where available) (Figure 6.3)
- PSA with Directivity, CS13 model (Figure 6.4)
- PSA with Directivity, BS13 model (Figure 6.5)
- PSA with Directivity, BSS20 model (Figure 6.6)
- PSA with Directivity, BS13-FaultNormal Component model (Figure 6.7)
- PSA with Directivity, BS13-FaultParallel Component model (Figure 6.8)
- Directivity-Adjustment Factor, Weighted Model (Figure 6.9 Vs30=760m/s, Figure 6.10 Vs30=180m/s)
- Directivity-Adjustment Factor with no lower bound, weighted model (Figure 6.11)
- Directivity-Adjustment Factor, CS13 model (Figure 6.12)
- Directivity-Adjustment Factor, BS13 model (Figure 6.13)
- Directivity-Adjustment Factor, BSS20 model (Figure 6.14)
- Directivity-Adjustment Factor, BS13-FaultNormal Component model (Figure 6.15)
- Directivity-Adjustment Factor, BS13-FaultParallel Component model (Figure 6.16)

For completeness, the PSA with directivity was mapped for all periods, but for periods less than 0.5 seconds the values mapped are equal to those without directivity. Directivity adjustment factors, as well as directivity-model-specific with-directivity PSA were mapped only for periods at or above 0.5sec.

Figure 6.2. PSA with Directivity, Weighted Model, Vs-760 directivity-adjustment factor

Figure 6.3. PSA with Directivity, Weighted Model, Vs30 dir-adjustment

Figure 6.4. PSA with Directivity, CS13 model

Figure 6.6. PSA with Directivity, BSS20 model

Figure 6.7. PSA with Directivity, BS13-FaultNormal Component model

Figure 6.8. PSA with Directivity, BS13-FaultParallel Component model

Figure 6.10. Directivity-Adjustment Factor, Weighted Model (Vs30<>760m/s)

Figure 6.11. Directivity-Adjustment Factor with no lower bound, weighted model

Figure 6.12. Directivity-Adjustment Factor, CS13 model

Figure 6.13. Directivity-Adjustment Factor, BS13 model

Figure 6.14. Directivity-Adjustment Factor, BSS20 model

Figure 6.15. Directivity-Adjustment Factor, BS13-FaultNormal Component model

Figure 6.16. Directivity-Adjustment Factor, BS13-FaultParallel Component model

These data have been plotted on a map of California so that the user may identify geographic features. The UCERF-3 fault sources have also been included in the maps. The maps have been produced to a high-enough resolution that the user may enlarge the image and visualize important details and locations in the map, as shown in the detail given in Figure 6.17.

Figure 6.17. Enlarged detail of intensity-measure map.

7 Directivity-Based Probabilistic Hazard in California: Interactive Maps

A web portal has been established to enable access to the data and tools presented in this report. A dataset of interactive maps in .html format has also been produced and assembled into an interactive web portal. In addition to displaying the data via colormaps, JavaScript code has been added to enable the user to select the intensity measures of interest and interact with the map by zooming in/out, panning, and clicking on the sites themselves, as shown in Figure 7.1.

The first time they visit the web site, we recommend that the first time the user read the instructions by clicking on the "Instructions & Notes" button. This toggle button opens and closes the instructions menu.

Via pull-down menus, the user can select the Oscillator Period, the data they would like to visualize (input data or intensity measures), the site-class Vs30 and the return period. Every time the user makes a new selection, the map in the web-portal frame is updated automatically. The user also has the option to access the map in a full web page instead of the frame, thus allowing for comparison of different cases.

When a directivity-based intensity measures is being displayed the tool automatically limits the oscillator-period selection to the periods where directivity was considered in the PSHA (>=0.5sec), as shown in Figure 7.2. When the no-directivity PSA is selected for the map, the user is automatically provided a wider selection of periods, as shown in Figure 7.3.

The same colorscale was used for different IM to enable comparisons. For example, the same colorscale was used for the PSA with and without directivity, as shown in Figure 7.2 and Figure 7.3. The same colorscale was used for the recommended Directivity-Adjustment factor (with a lower bound value of 1) and the Weighted-Model Directivity-Adjustment factor, where no lower bound was imposed, as shown in Figure 7.4 and Figure 7.5. The pink-shaded regions in the second figure indicate regions of de-amplification due to the computed directivity-adjustment factor.

The same colorscale is used for directivity-adjustment factors of the individual directivity so that they may be compared with each other. Please note that this colorscale is different from that of the weighted-average directivity-adjustment factor, as this would decrease the resolution of the latter figures. All directivity-adjustment-factor map colorscales have been defined such that the value of 1.0 falls at the dark-blue values and values below 1.0 are pink, as is shown in Figure 7.6.

When the user overs over an individual site marker, basic information is displayed on the map, as shown in Figure 7.7. This information is useful to identify the location of the study sites.

When the user clicks on an individual site marker, a popup object opens up with more information about the site, as well as hazard data for that site, as shown in Figure 7.8. In this pop-up box the user can access the following data:

- Site location and data
- Intensity-measure value
- Plot of Uniform-Hazard Spectra with and without directivity
- Plot of Hazard Curves with and without directivity

- Hazard-Deaggregation plots: Magnitude-Distance Bins
- Hazard-Deaggregation plots: Hazard by source type
- Hazard-Deaggregation plots: Hazard by fault source
- Tabulated values of Uniform-Hazard spectra with and without directivity
- Tabulated values of Directivity-Adjustment factors (with and without lower bound)

The user may also visualize, interactively, the site data, such as site-specific Vs30 (Figure 7.9), Z1.0 (Figure 7.10), Z2.5 (Figure 7.11), as well as the UCERF-3 Fault Source (Figure 7.12). More information about a fault is provided when the user clicks on it, as shown in Figure 7.13. Additional data is also accessible in additional layers that can be turned on by the user: the Natural-Gas pipelines in California (provided by CEC), and the CEC storage facilities, as shown in Figure 7.14. Additional background-map layers are also available via the layer controls in the map.

In addition to having the basic zooming options (via mouse and map buttons), the maps have helpful navigation/visualization tools. The user can add a marker by clicking on the add-marker button and entering the marker label and coordinates, as shown in Figure 7.15.

By clicking on the distance button on the lower-left corner of the map and following the direction in the pop-up window, the user can measure distances between markers, as shown in Figure 7.16.

NATURAL HAZARD & RESILIENCY RESEARCH CENTER (NHR3) WEB PORTAL

Directivity-Based Probabilistic Seismic Hazard in California: Interactive Maps

Silvia Mazzoni, Linda Al Atik, Nick Gregor, Yousef Bozorgnia Natural Hazards Risk and Resiliency Research Center (NHR3), UCLA November 2022, DOI: XXXX

Directivity-Based PSHA was performed on 19,316 uniformly-distributed sites that span the entire state of California. The analysis results were processed and are presented visually in this dataset to give a better understanding of the geographic distribution of directivity effects at the uniform-hazard level. This map dataset contains maps of PSA with and without directivity, as well as the recommended directivity-amplification ratio that can be applied to your own PSHA results, which is computed from selected and weighted directivity models. The individual directivity-model ratios are also included in this dataset. Maps of the data used in the PSHA are also included in this dataset: Site-Specific Vs30, Z1.0, and Z2.5, and the UCERF-3 fault sources. Click here to retun to the project Main page

structions & Notes (click here to view/hide) uctional Video (click here to view/hide)

Quick Instructions: Always allow time for loading and rendering. Change menu selections (menu options change with different Oscillator Periods and Map Data). Zoom & Pan the map with your mouse and mouse wheel. Add markers (top left). Measure distances (bottom right). Change map layers (top right). Hover or click on a site for hazard data and plots.

For questions, please contact the developer of this tool: Silvia Mazzoni smazzoni_AT_ucla_DOT_edu

Figure 7.1. Directivity-Based Probabilistic Seismic Hazard in California: Interactive Maps Web Portal.

Figure 7.2. Oscillator-Period Options for directivity-based IM

Figure 7.3. Oscillator-Period Options for no-directivity PSA

Figure 7.4. Recommended Directivity-Adjustment Factor (with lower bound)

Figure 7.5. Computed Directivity-Adjustment Factor (no lower bound)

Figure 7.6. Directivity-Adjustment Factor: CS13

Figure 7.7. Site-Data hovering

Figure 7.8. Site Data pop-up box

Figure 7.9. Interactive map of site-specific Vs30.

Figure 7.10. Interactive map of site-specific Z1.0.

Figure 7.11. Interactive map of site-specific Z2.5.

Figure 7.12. Interactive map of UCERF-3 Fault Sources.

Figure 7.13. Interactive map of UCERF-3 Fault Sources: clicking on a fault.

Figure 7.14. Additional-data layers.

NATURAL HAZARD & RESILIENC D Seismic H silv	t californiahazardtoolmaps.s3.us-east-2.amazonaws.com says User-Defined Marker Info: <label,>Latitude,Longitude: (leave blank if no marker) (don't forget the comma and the negative sign West of Greenwich) Example: Silvia's Marker,37.694,-119.225 myMarker, 37.694,-119.225</label,>	ve Maps
Directivity-Based PSHA was performed on 1 presented visually in this dataset to give a b dataset contains maps of PSA with and with results, which is computed from selected an	OK Cancel	analysis results were processed and are ne uniform-hazard level. This map at can be applied to your own PSHA so included in this dataset. Maps of the

data used in the PSHA are also included in this dataset: Site-Specific Vs30, Z1.0, and Z2.5, and the UCERF-3 fault sources. Click here to retun to the project Main page

Instructions & Notes (click here to view/hide)

Quick Instructions: Always allow time for loading and rendering. Change menu selections (menu options change with different Oscillator Periods and Map Data). Zoom & Pan the map with your mouse and mouse wheel. Add markers (top left). Measure distances (bottom right). Change map layers (top right). Hover or click on a site for hazard data and plots.

Figure 7.15. Add-marker option (click on button circled in red in the figure, and enter data in the pup-up window).

Figure 7.16. Add distance metrics option (click on lower-left button in the figure and enter data in the pup-up window).

8 Directivity-Based PSHA Interactive Tool

The Directivity-Based PSHA Interactive Tool is an on-line web tool that interpolates the state-wide PSHA results to provide uniform-hazard spectra for PSA with and without directivity, as well as for the directivity adjustment factor, at a user-specified location, Vs30, and return period. The tool's opening page is shown in Figure 8.1, and it can be accessed via the project's web site: <u>https://www.risksciences.ucla.edu/nhr3/california-directivity</u>. A description of the data is given in that main page and detailed instructions on how to use the tool and information about the required input are given in the instructions block on the tool's landing page. We recommend the user review these instructions the first time they access the web site.

As shown in Figure 8.1, the primary input parameters are the site location and Vs30. If the user-defined location and Vs30 do not fall on a study site, the web tool computes the Uniform-Hazard Spectra with and without directivity at the user site by interpolating the data from the nearest sites and Vs30. If the site is aligned with the study sites in either longitude or latitude, the two nearest sites are used, otherwise the four nearest sites are used in the interpolation. The tool performs interpolations on the no-directivity PSA and the directivity-adjustment factor separately.

Once it determines the location(s) of the nearest site(s), the program interpolates the nodirectivity PSA values for all periods at each site for the user-defined Vs30. This Vs30 interpolation is performed in log space.

Once the PSA values are computed at each site for the same Vs30, when the user site does not fall on a study site, two no-directivity uniform-hazard spectra are computed: a spatiallyweighted average spectrum, and an envelope spectrum. The spatially-weighted average is computed by assigning a relative weight to each nearby site equal to the inverse of the distance from the user-defined site and adding them up. The envelope spectrum is computed by taking the maximum no-directivity PSA of the nearby sites for each period. The envelope spectrum is, by definition, the more conservative estimate of the hazard at the user site. When 4 sites are used in the interpolation, the web tool computes the coefficient of variation of PSA between the four sites for the case of Vs30=760m/s, return period=2475, averaged over the period range of 0.1-2 seconds. When this COV is greater than or equal to 0.06, the program automatically selects the envelope spectrum as the baseline no-directivity UHS, while it selects the spatially-weighted average if the value of 0.06 is not exceeded, as shown in Figure 8.2. The web tool, however, does allow the user to select either of these UHS or the one from any of the other sites to be the baseline line no-directivity spectrum that will be adjusted to account for directivity, as shown in the pop-up menu Figure 8.3. Once the user makes a new selection the tool recomputes the withdirectivity spectra based on this selection.

Directivity-Based PSHA Tool

This Interactive Site-Hazard Portal interpolates the state-wide PSHA results to provide uniform-hazard spectra with and without directivity, as well as the directivity adjustment factor, at a user-specified location, Vs30, and return period.

This tool allows the user to develop a unique directivity adjustment factor by changing the relative weight of the directivity models

Interactive maps of the Intensity Measures computed in the directivity-based PSHA have also been developed. Click here to access these maps.

Click here to access the home page for this web portal.

Instructions Show Instructions Input Parameters		
Load Sample Values Site	Directivity	Hazard
Site Location (Lat,Lon) NOTE: Site Must be located in California: 37.02,-121.93 Site Vs30 (m/s): 453.5	Relative Wt BS13 (def.=1) [Bayless and Somerville, 2013] 1 Relative Wt BSS20 (def.=1) [Bayless et al., 2020] 1 Relative Wt CS13 (def.=2) [Chiau and Soudish 2013]	UHS Return Period (yr): 2475 ~ Oscillator Period (sec): 3 ~
Run	Apply lower bound of 1.0 to the Directivity Adjustment Factor	

Back

The portal has been developed by Dr. Silvia Mazzoni of NHR3, in collaboration with the researchers who performed the study: Dr. Linda Al Atik, Dr. Nick Gregor and Prof. Yousef Bozorgnia.

Figure 8.1. Main page for Directivity-Based PSHA Web Tool.

Figure 8.2. No-Directivity UHS computed by Interactive PSHA Web Tool.

Figure 8.3. User selection for No-Directivity UHS in Interactive PSHA Web Tool.

The directivity-adjustment factor for each directivity model, on the other hand, is computed for each site at Vs30=760m/s, unless it is available for other Vs30, in which case it is interpolated at the user-defined Vs30. The directivity-adjustment factor at the user-defined site is then computed from the spatially-weighted average of each neighboring site, where the weight is proportional to the inverse of the distance between each study site and the user-defined site. This factor is used whether the user selects the envelope of the weighted average for the baseline no-directivity UHS. When the user selects a study-site for the no-directivity UHS, the tool uses the directivity-adjustment factors for that site.

As shown in Figure 8.1, the relative weights of the individual directivity models are defined by the user – the values used by the project study presented in the companion reports are provided as default values. These values are used to compute the weighted-average directivity-adjustment factor that is used by the program to compute the with-directivity PSHA Uniform-Hazard Spectrum at the user site, as shown in Figure 8.4. The user also has the option to set a lower bound of 1.0 for the directivity-amplification factor. The directivity-adjustment factors, as well as their corresponding UHS, are also displayed graphically, as shown in Figure 8.4.

Figure 8.4. With-Directivity UHS in Interactive PSHA Web Tool.

The user can iterate on the relative weights of the directivity models. However, to select new values for the other input parameters, the user needs to start a new project, as shown in Figure 8.5.

	THURLOT U	
Relative Wt CS13 (def.=2)	UHS Return Period (vr):	2475
2.0		
Relative Wt BS13 (def.=1)	Oscillator Period (sec):	3.0
1.0		
Relative Wt BSS20 (def.=1)		
1.0		
Apply lower bound of 1.0 to the Directivity Adjustment Factor		
	Relative Wt CS13 (def.=2) 2.0 Relative Wt BS13 (def.=1) 1.0 Relative Wt BS520 (def.=1) 1.0 Apply lower bound of 1.0 to the Directivity Adjustment Factor	Relative Wt CS13 (def.=2) UHS Return Period (yr): 2.0 Oscillator Period (sec): 1.0 Relative Wt BSS20 (def.=1) 1.0 .0 0 Apply lower bound of 1.0 to the Directivity Adjustment Factor

Figure 8.5. Updating input parameters in Interactive PSHA Web Tool.

To enable the user to select the most appropriate input parameters and baseline nodirectivity spectra, the Interactive PSHA Web Tool provides two interactive maps, as shown in Figure 8.6. The first map shows the location of the user-defined site, as well as the UCERF-3 fault sources, overlaid on top of a google map so that the user may visualize the geographic features in the area. If the user-defined site does not correspond to a study site, the two or four nearby sites used for interpolation are also shown in the map. The second interactive map displays the statewide intensity measure defined by the user input. The user may add their site location to this map and compute distances. Both interactive maps provide data when the user hovers over a marker or clicks on it.

Figure 8.6. Interactive maps in PSHA Web Tool.

The Interactive PSHA Web tool also provides numerical-results tables of the data it computes and presents in the graphs. The user may either copy the results and paste them elsewhere or may download a .csv file containing all the input parameter and output values. The layout of the data tables is shown in Figure 8.7.

Numerical Results																								
Site Data User Input:																								
Site Location (Lat,Lon):					3	7.02,-12:	.93																	
Site Vs30 (m/s):					4	53.5																		
UHS Return Period (yr):					24	474.911																		
Oscillator Period (sec):					3.	3.0																		
Apply lower bound of 1.0 to the Directivit	y Adjus	tment Fa	ctor (1=	yes,0=i	no): 0																			
Site Data:																								
Site-Quadrant UHS PSA-COV (avg over 0.	01-2se	c): 0.1	37 NO)-Directi	vity Env	elope UH	S is use	d when	this qua	antity>=	0.06, N	O-Direct	ivity Wei	ghted Av	erage UH	HS is use	d otherw	ise						
Interpolation-Quadrant Data																								
Corner-Site Label:		-	sit	00810		Site008	11	Site	00021	-	Site	ncoon												
Corner Site Laber	-	-	27	0		37.0	••	27.0		-	27.0	5												
Comer-Site Lautude:			37.	.0		37.0		37.0			37.0													
Corner-Site Longitude:			-12	21.95		-121.9		-121	9		-121		_											
Corner-Site VsSS:			47	5.35		480.79		495.	4		455.	.25												
Corner-Site Geometric Weight:			0.3	309		0.242		0.20	6		0.24	12												
Corner-Site Vs30 Interpolation list:			"Vs	s400", "	/s55"	"Vs400",	"VsSS"	"Vs4	00", "Vs	SS_ZSS	" "Vs4	100", "Vs	SS"											
*Corner-Site Z1.0 (km) for each Vs30 use	ed in int	erpolati	on: 0.3	361, 0.2	58	0.361, 0	.262	0.36	1, 0.244		0.36	1, 0.293												
*Corner-Site Z2.5 (km) for each Vs30 use	ed in int	erpolati	on: 1.2	265, 1.0	38	1.265, 1	.025	1.26	5, 1.02		1.26	5, 1.091	L .											
Corner-Site Directivity-Amp Vs30:			Vs	760		Vs760		Vs76	50		Vs76	50												
*Click here to access the interactive maps of the estir ** Site-Specific Z values were estimated for a limited	nated site number (e-specific \ of sites.	/s30 values	s for the s	tudy sites	Vs30 Inte	ractive Ma	P																
For the sites where the estimated site-specific Z value Z_psha = max {mapped Site-Specific Estimated Z wh	ere availa	railable, th able, Vs-30	ie analysts) estimated	i did not al d default 2	low the Z }-	values use	d in the Pi	SHA anal	ysis to be s	shallower t	han the d	default valu	le associate	d with the	site-specif	fic Vs30:								
Click on the following links to access the interactive m	aps of th	e estimate	d site-spec	cific Z1.0 a	and Z2.5 v	alues for t	ne study s	ites: Z1.	0 Interacti	re Map an	d Z2.5 Int	teractive N	lap											
UHS NO Directivity:																								
UHS Period (s):	0.0	1 0.0	2 0.0	3 0.0	4 0.0	0.5 0.0	75 0.	1 (0.15 (1.2	0.25	0.3	0.4	0.5	0.75	1.0	1.5	2.0	3.0	4.0	5.0	7.5	10.0	PGV (cm/s)
Site09810	0.93	1 0.0	20 0.00	01 1 0	05 1 2	26 1 5	72 1	822 2	2 1 1 2	245	2 272	2 105	1.967	1 783	1 366	1.066	0.714	0.53	358	0.267	0.213	0.123	0.078	107.246
Chaogert	1.02	1 1.0	22 1.10	06 1.0	20 1.2	102 1.7	47 2	021				2.490	2.220	2.024	1.500	1.000	0.021	0.55	0.406	0.202	0.220	0.125	0.075	104.267
Sheepool	1.02			EA 1.5	20 1	NGS 1.7			2.300 1		2.50	2.405	2.239	2.024	2.02	1.62	1.077	0.000	0.506	0.305	0.200	0.155	0.005	124.207
Site09921	1.23	59 1.2	5/ 1.3	54 1.5	1.0	56 2.0	84 2.	914 2	2.79	2.998	3.102	3.049	2.828	2.608	2.03	1.62	1.0//	0.789	0.526	0.385	0.298	0.162	0.1	165.981
Site09920	1.07	1.0	59 1.10	6/ 1.2	98 1.4	156 1.8	19 2.	116 2	2.488	2.649	2.709	2.666	2.44	2.221	1.706	1.362	0.915	0.067	0.449	0.337	0.261	0.145	0.091	140.098
Weighted Average NO-Directivity UHS (g)	: 1.04	18 1.0	5 1.13	35 1.2	58 1.4	107 1.7	78 2.	064 2	2.402	2.564	2.617	2.553	2.323	2.115	1.631	1.29	0.863	0.635	0.426	0.317	0.248	0.139	0.088	131.308
Envelope NO-Directivity UHS (g):	1.23	39 1.2	57 1.3	54 1.5	1.6	556 2.0	84 2.	414 2	2.79 2	2.998	3.102	3.049	2.828	2.608	2.03	1.62	1.077	0.789	0.526	0.385	0.298	0.162	0.1	165.981
NO-Directivity UHS (g):	1.23	9 1.2	57 1.3	54 1.5	1.6	556 2.0	84 2.	414 2	2.79	2.998	3.102	3.049	2.828	2.608	2.03	1.62	1.077	0.789	0.526	0.385	0.298	0.162	0.1	165.981
NOTE: Recommended UHS NO Directivity: Envelope :	Spectrum	Quadra	int average	PSA-COV	>=0.06																			
Directivity Adjustment Factor	rs:																							
Directivity-Model Period (5):	0.5	0.75	1.0	1.5	2.0	3.0	4.0	5.0	7.5	10	.0													
Directivity-Model BS13 (Wt=1.0):	1.007	1.008	1.188	1.207	1.19	6 1.20	1.20	9 1.2	15 1.2	3 1.2	34													
Directivity-Model BSS20 (Wt=1.0):	1.007	1.015	1.026	1.065	1.11	1 1.213	1.31	1 1.3	85 1.5	16 1.5	62													
Directivity-Model CS13 (Wt=2.0):	1.007	1.014	1.021	1.033	1.04	7 1.058	1.08	3 1.0	0 1.1	12 1.1	07													
Weighted Directivity Amplification Pation	1.007	1.012	1.054	1.095	1.0	1 1 20	1.00	2 1 1	05 1 2	42 1 7	52													
A and a second s	1.007	1.015	1.004	1.00.		1.150	, 1.17	- 1.1	55 1.2	45 1.2	.55													
-																								
UHS With Directivity:																								
UHS Period (s):	0.01	0.02	0.03	0.04	0.05	0.075	0.1	0.15	0.2	0.25	0.3	0.4	0.5	0.75	1.0	1.5	2.0	3.0	4.0	5.0	7.5	10.		(cm/s)
UHS NO Directivity (Envelope) (a):	1 239	1 257	1 354	1.5	1.656	2 084	2 414	2 70	2 909	3 103	3.04	9 2.82	8 2 60	2 02	1.62	1.073	0.790	0.526	0.29	5 0.20	8 0.16	2 0 1	165	981
Directivity-Model BS12 (WE=1.0) (=):	1 220	1 257	1 354	1.5	1.656	2.004	2.414	2.79	2.000	3.102	3.04	0 2.02	8 3.63	2.03	1.02	5 1.2	0.769	0.520	0.36	5 0.29	2 0.10	0.1	100	081
Directivity-Hodel DS15 (WC+1.0) (g):	1.235	1.257	1.004	1.5	1.650	2.004	2.414	2.79	2.590	3.102	3.04	0 2.62	0 2.020	2.040	1.52	1.3	0.544	0.032	0.40	5 0.30	2 0.19	6 0.12	6 105	081
Directivity-model BSS20 (Wt=1.0) (g):	1.239	1.257	1.354	1.5	1.050	2.084	2.414	2.79	2.998	3.102	3.04	9 2.82	o 2.620	2.06	1.662	1.147	0.8/7	0.638	0.50	0.41	5 0.24	0.15	105	901
Directivity-Model CS13 (Wt=2.0) (g):	1.239	1.257	1.354	1.5	1.056	2.084	2.414	2.79	2.998	3.102	3.04	y 2.82	0 2.62	2.058	1.654	• 1.113	0.826	0.562	0.41	0.32	5 0.18	0.11	1 165	.901
Weighted UHS With Directivity (g):	1.239	1.257	1.354	1.5	1.656	2.084	2.414	2.79	2.998	3.102	3.04	9 2.82	8 2.62	2.056	1.724	1.168	0.868	0.598	0.45	0.35	6 0.20	1 0.12	25 165	981
4																								
		_																						
Download Project Result	S																							

Figure 8.7. Data Tables in Interactive PSHA Web Tool.

The seismic-hazard deaggregation data for the study sites used in the interpolation by the Interactive PSHA Web Tool are also provided by the tool for the case of no directivity, as shown in Figure 8.8. The deaggregation data consists of three graphs: Magnitude-Distance bins, source-type hazard curves, and Crustal-fault hazard curves. When more than one site is used, the user may visualize each site by clicking on the tab corresponding to each site, as shown in Figure 8.8.

Figure 8.8. Deaggregation data in Interactive PSHA Web Tool.

The Interactive PSHA Web Tool also provides the Fault-Normal and Fault-Parallel component data from the BS-13 model, as presented in the companion reports. As shown in Figure 8.9, the tool provides tabulated values of the adjustment factors for these components as well as the UHS values.

Results: Fau	ivity Adi	Fact B	k Faul	t-Para	allel C	ompor Parallel	nents	for B	S-13									¢.	5			
2.00 BS13_Fa BS13_Fa BS13_Av 1.80 -	aultNorm aultParall verage Di	al lel irectivity			i u i uuti																	
1.60 -					1		BS-1	3 Fau	ult-No	rmal (& Faul	t-Para	allel C	Directi	ivity A	djust	ment	Facto	rs:			
1.40					1		Direc	tivity-I	Model P	eriod (s):	3	0.5	0.75	1.0	1.5	2.0	3.0	4.0	5.0	7.5 1	10.0
					<i>i</i>		Direct	ivity-Mo	odel BS1	3_FaultN	lormal:	3	1.007	1.212	1.233	1.294	1.42	1.562	1.701	1.76	1.808	1.847
				-1'			Direct	tivity-Mo	odel BS1	3_FaultP	arallel:		1.007	1.008	1.023	0.948	0.915	0.908	0.892	0.862	0.832).833
1.20 -			,	1			Direct	ivity-Mo	odel BS1	3 Averag	e Direct	vity:	1.007	1.008	1.188	1.207	1.196	1.201	1.209	1.215	1.23 1	1.234
0.800 0.010 HS With Dire	o. ectivit	¹⁰ y BS1	od (sec) 3:	1.0		10																
IHS Period (s):	0.01	0.02	0.03	0.04	0.05	0.075	0.1	0.15	0.2	0.25	0.3	0.4	0.5	0.75	1.0	1.5	2.0	3.0	4.0	5.0	7.5	10.0
IHS NO Directivity Envelope) (g):	1.239	1.257	1.354	1.5	1.656	2.084	2.414	2.79	2.998	3.102	3.049	2.828	2.608	2.03	1.62	1.077	0.78	9 0.52	6 0.38	5 0.298	0.162	0.1
Directivity-Model S13 Average Directivity (g):	1.239	1.257	1.354	1.5	1.656	2.084	2.414	2.79	2.998	3.102	3.049	2.828	2.626	2.046	5 1.925	1.3	0.94	4 0.63	2 0.46	5 0.362	0.199	0.12
irectivity-Model S13_FaultNormal g):	1.239	1.257	1.354	1.5	1.656	2.084	2.414	2.79	2.998	3.102	3.049	2.828	2.626	2.46	1.997	1.394	1.12	0.82	2 0.65	5 0.524	0.293	0.18
irectivity-Model S13_FaultParallel	1.239	1.257	1.354	1.5	1.656	2.084	2.414	2.79	2.998	3.102	3.049	2.828	2.626	2.040	5 1.657	1.021	0.72	2 0.47	8 0.34	0.257	0.135	0.08

Figure 8.9. Fault-Normal and Fault-Parallel Component Data in Interactive PSHA Web Tool.

9 Summary

The directivity-based state-wide PSHA study has produced a vast amount of valuable data. The objective of this phase of the project, summarized in this report, was to ensure that these data would be accessible in a productive manner.

The web tools have been developed in such a manner that the user may use the complete dataset or just parts of it. The output of PSHA results have been separated into two main quantities: Directivity-based PSA and Directivity-Adjustment factors. The user is able to compute the with-directivity PSA values at any California location, for any Vs30 and return periods. Directivity-adjustment factors can be obtained from the interactive web tools and be applied directly to the user-defined spectrum to compute PSA with directivity.

The Web Tools, as well as the data tables, can be accessed via the Dataset main page: https://www.risksciences.ucla.edu/nhr3/california-directivity.

10 References

- Al Atik, L, N. Gregor, Y. Bozorgnia. S. Mazzoni (2022). Directivity-Based Probabilistic Seismic Hazard Analysis for the State of California: Report 1, No-Directivity Baseline Case. Civil and Environmental Engineering Department and Natural Hazards Risk and Resiliency Research Center, University of California, Los Angeles.
- Al Atik, L, N. Gregor, Y. Bozorgnia. S. Mazzoni (2023). Directivity-Based Probabilistic Seismic Hazard Analysis for the State of California: Report 2. Civil and Environmental Engineering Department and Natural Hazards Risk and Resiliency Research Center, University of California, Los Angeles.

11 Appendix A. Dataset Tables: sample file content and format

11.1 Hazard-Curve Data: Initial Collection and Processing (.out3 output)

First Filename	SourceHazardData_SourceHazard_250sitesInFile_Site00001toSite00250.HDF5
Last Filename	SourceHazardData_SourceHazard_250sitesInFile_Site19251toSite19316.HDF5
File Format	HDF5
Number of Files	78
Sample File Content	sample key: Site15022
-	->Vs1100: <hdf5 "="" (23="" group="" members)="" site15022="" vs1100"=""></hdf5>
	->PGV: <hdf5 "="" (11="" group="" members)="" pgv"="" site15022="" vs1100=""></hdf5>
	+attr: FaultCases 0
	+attr: NFaults 60
	+attr: Period -1.0
	+attr: PeriodLabel -1.0
	+attr: SiteLatitude 39.9
	+attr: SiteLongitude -123.95
	+attr: iProb 1
	+attr: nAmp 20
	+attr: nAtten 1
	->AmpList: <hdf5 "<f4"="" "amplist":="" (20,),="" dataset="" shape="" type=""></hdf5>
	->D_bar: <hdf5 "<f4"="" "d_bar":="" (20,),="" dataset="" shape="" type=""></hdf5>
	->Eps_bar: <hdf5 "<f4"="" "eps_bar":="" (20,),="" dataset="" shape="" type=""></hdf5>
	->HazardData: <hdf5 "hazarddata":="" (60,="" 20),="" dataset="" shape="" td="" type<=""></hdf5>
	" <f4"></f4">
	->M_bar: <hdf5 "<f4"="" "m_bar":="" (20,),="" dataset="" shape="" type=""></hdf5>
	->MinDisList: <hdf5 "<f4"="" "mindislist":="" (60,),="" dataset="" shape="" type=""></hdf5>
	->Poisson_Prob: <hdf5 "poisson_prob":="" (20,),="" dataset="" shape="" td="" type<=""></hdf5>
	" <t4"></t4">
	->SourceList: <hdf5 "sourcelist":="" " o"="" (),="" dataset="" shape="" type=""></hdf5>
	->Wt_Total_Events_per_yr: <hdf5 dataset<="" td=""></hdf5>
	"Wt_Total_Events_per_yr": shape (20,), type " <t4"></t4">
	->al_WtList: <hdf5 "<f4"="" "al_wtlist":="" (60,),="" dataset="" shape="" type=""></hdf5>
	->pSegList: <hdf5 "<f4"="" "pseglist":="" (60,),="" dataset="" shape="" type=""></hdf5>

Table 11.1. Hazard-Curve Data: Initial Collection and Processing

11.2 Hazard-Curve Data: Hazard Levels Only (.out3 output)

Table 11.2. Source-Hazard Data – Hazard-Levels Only

First	SourceHazardData_HazardLevelsOnly_250sitesInFile_Site00001toSite00250.HDF5
Filename	
Last	SourceHazardData_HazardLevelsOnly_250sitesInFile_Site19251toSite19316.HDF5
Filename	
File	HDF5
Format	

Number of	78
Files	
Sample	sample key: Site15022
File	->Vs1100: <hdf5 "="" (23="" group="" members)="" site15022="" vs1100"=""></hdf5>
Content	->PGV: <hdf5 "="" (1="" group="" members)="" pgv"="" site15022="" vs1100=""></hdf5>
	+attr: FaultCases 0
	+attr: NFaults 60
	+attr: Period -1.0
	+attr: PeriodLabel -1.0
	+attr: SiteLatitude 39.9
	+attr: SiteLongitude -123.95
	+attr: iProb 1
	+attr: nAmp 20
	+attr: nAtten 1
	->AmpList: <hdf5 "<f4"="" "amplist":="" (20,),="" dataset="" shape="" type=""></hdf5>

11.3 Hazard-Curve Data: Directivity Amplification Factor (.out3 output)

First	SourceHazardData_SourceHazardDirectivityRatio_250sitesInFile_Site00001toSite00250.HDF5
Filename	
Last	SourceHazardData_SourceHazardDirectivityRatio_250sitesInFile_Site19251toSite19316.HDF5
Filename	
File	HDF5
Format	
Number	78
of Files	
Sample	sample key: Site15022
File	->Vs1100: <hdf5 "="" (10="" group="" members)="" site15022="" vs1100"=""></hdf5>
Content	->T00500: <hdf5 "="" (3="" group="" members)="" site15022="" t00500"="" vs1100=""></hdf5>
	->Dir: <hdf5 "="" (2="" dir"="" group="" members)="" site15022="" t00500="" vs1100=""></hdf5>
	->Amp: <hdf5 "<f4"="" "amp":="" (20,),="" dataset="" shape="" type=""></hdf5>
	->Rate: <hdf5 "<f4"="" "rate":="" (20,),="" dataset="" shape="" type=""></hdf5>
	->DirectivityAmpRatio: <hdf5 "="" directivityampratio"<="" group="" site15022="" t00500="" td="" vs1100=""></hdf5>
	(5 members)>
	->AmpDir: <hdf5 "<f8"="" "ampdir":="" (8,),="" dataset="" shape="" type=""></hdf5>
	->AmpNoDir: <hdf5 "<f8"="" "ampnodir":="" (8,),="" dataset="" shape="" type=""></hdf5>
	->DirRatio: <hdf5 "<f8"="" "dirratio":="" (8,),="" dataset="" shape="" type=""></hdf5>
	->DirRatio_NoUnityLB: <hdf5 "dirratio_nounitylb":="" (8,),="" dataset="" shape="" td="" type<=""></hdf5>
	" <f8"></f8">
	->Rate: <hdf5 "<f8"="" "rate":="" (8,),="" dataset="" shape="" type=""></hdf5>
	->noDir: <hdf5 "="" (2="" group="" members)="" nodir"="" site15022="" t00500="" vs1100=""></hdf5>
	->Amp: <hdf5 "<f4"="" "amp":="" (20,),="" dataset="" shape="" type=""></hdf5>
	->Rate: <hdf5 "<f4"="" "rate":="" (20,),="" dataset="" shape="" type=""></hdf5>

Table 11.3. Source-Hazard Data – Directivity Amplification Factor

11.4 Hazard-Curve Data: All, No-Directivity PSA, With-Directivity PSA, and Directivity-Amplification Factors at all Sites, VS30s, and Periods (.out3 output)

Table 11.4. Source-Hazard Data – All: noDir and Dir

First Filename	SourceHazardData_SourceHazardAllDirNoDir_250sitesInFile_Site00001toSite00250.HDF5
Last Filename	SourceHazardData_SourceHazardAllDirNoDir_250sitesInFile_Site19251toSite19316.HDF5
File Format	HDF5
Number of Files	78
Sample	sample key: Site15022
File	->Vs1100: <hdf5 "="" (2="" group="" members)="" site15022="" vs1100"=""></hdf5>
Content	->Vs1100: <hdf5 "="" (23="" group="" members)="" site15022="" vs1100="" vs1100"=""></hdf5>
	+attr: DirectivityPeriodLabelList ['T00500', 'T00750', 'T01000', 'T01500', 'T02000', 'T03000', 'T04000', 'T05000', 'T07500', 'T10000']
	->PGV: <hdf5 "="" (9="" group="" members)="" pgv"="" site15022="" vs1100=""></hdf5>
	->Amp_Directivity: <hdf5 "<f4"="" "amp_directivity":="" (20,),="" dataset="" shape="" type=""></hdf5>
	->Amp_Directivity_NoUnityLB: <hdf5 "amp_directivity_nounitylb":<="" dataset="" td=""></hdf5>
	shape (20,), type " <f4"></f4">
	->Amp_NoDirectivity: <hdf5 "<f4"="" "amp_nodirectivity":="" (20,),="" dataset="" shape="" type=""> ->Amp_NoDirectivity_DirRate:<hdf5 "amp_nodirectivity_dirrate":="" dataset="" shape<="" td=""></hdf5></hdf5>
	(20,), type " <f4"></f4">
	->DirRatio: <hdf5 "<f8"="" "dirratio":="" (20,),="" dataset="" shape="" type=""></hdf5>
	->DirRatio_NoUnityLB: <hdf5 "dirratio_nounitylb":="" (20,),="" dataset="" shape="" td="" type<=""></hdf5>
	Seta Directivity - HDE5 detect "Pate Directivity", chang (20), type " <f4"< p=""></f4"<>
	->Rate_NoDirectivity: <hdf5 "<f4"="" "rate_nodirectivity":="" (20,),="" dataset="" shape="" type=""> ->Rate_NoDirectivity:<hdf5 "<f4"="" "rate_nodirectivity":="" (20,),="" dataset="" shape="" type=""> ->Rate_Ratio:<hdf5 "<f4"="" "rate_ratio":="" (20,),="" dataset="" shape="" type=""></hdf5></hdf5></hdf5>
	->Vs760: <hdf5 "="" (23="" group="" members)="" site15022="" vs1100="" vs760"=""></hdf5>
	+attr: DirectivityPeriodLabelList [100500', 100/50', 101000', 101500', 102000',
	103000, 104000, 105000, 10/500, 110000]
	->PGV. <mdf5 (9="" 00="" group="" members)="" pgv="" sile15022="" v\$="" v\$1100=""></mdf5>
	->Amp_Directivity. NoUnityI B:>HDF5 dataset "Amp_Directivity". Shape (20,), type <14 >
	shape (20) type " <f4"></f4">
	->Amp NoDirectivity: <hdf5 "<f4"="" "amp="" (20,),="" dataset="" nodirectivity":="" shape="" type=""></hdf5>
	->Amp_NoDirectivity_DirRate: <hdf5 "amp_nodirectivity_dirrate":="" dataset="" shape<="" td=""></hdf5>
	(20,), type <14 >
	->DirRatio.<(D) utataset DirRatio : Silape (20,), type <10 >
	->Dirkatio_roomityLD. <rr></rr> iDir5 dataset Dirkatio_roomityLD . shape (20,), type
	->Rate_Directivity: <hdf5 "<f4"="" "rate_directivity":="" (20)_type="" dataset="" shape=""></hdf5>
	->Rate NoDirectivity: <hdf5 "<f4"="" "rate="" (20.),="" dataset="" nodirectivity":="" shape="" type=""></hdf5>
	->Rate_Ratio: <hdf5 "<f4"="" "rate_ratio":="" (20,),="" dataset="" shape="" type=""></hdf5>

11.5 Uniform-Hazard Spectra Data: Initial Collection and Processing (*UHSoutput.txt output)

Table 11.5. Uniform-Hazard Spectra Data: Initial Collection and Processing

First	UHSData_250sitesInFile_Site00001toSite00250.HDF5
Filename	
Last	UHSData_250sitesInFile_Site19251toSite19316.HDF5
Filename	
File	HDF5
Format	
Number	78
of Files	

```
Sample
            -- sample key: Site15022
File
             ->Vs1100:<HDF5 group "/Site15022/Vs1100" (12 members)>
Content
                  +attr: InputFilename Site15022/HazRuns/Vs1100/Run UHS.txt
                  +attr: NHazardLevels 8
                  +attr: Nperiods 23
                  +attr: UHSdataFilename \Output_UHS_Processed/Site15022/Vs1100\Vs1100\Site15022-
           Vs1100-noDir-UHSoutput.txt
                  +attr: Version ***Version45.1***
               ->AEFList:<HDF5 dataset "AEFList": shape (8,), type "<f4">
               ->AEPList:<HDF5 dataset "AEPList": shape (8,), type "<f4">
               ->AllData:<HDF5 dataset "AllData": shape (), type "|O">
               ->DistanceBar Data atRP:<HDF5 group "/Site15022/Vs1100/DistanceBar Data atRP" (23
           members)>
                    +attr: ReturnPeriods ['50.862' '99.499' '474.561' '949.118' '999.500' '2474.911' '5000.000'
           '10000.000'1
                  ->-1.0:<HDF5 dataset "-1.0": shape (8,), type "<f4">
                  ->10.0:<HDF5 dataset "10.0": shape (8,), type "<f4">
               ->EpsilonBar_Data_atRP:<HDF5 group "/Site15022/Vs1100/EpsilonBar_Data_atRP" (23
           members)>
                    +attr: ReturnPeriods ['50.862' '99.499' '474.561' '949.118' '999.500' '2474.911' '5000.000'
            '10000.000']
                  ->-1.0:<HDF5 dataset "-1.0": shape (8,), type "<f4">
           . . .
                  ->10.0:<HDF5 dataset "10.0": shape (8,), type "<f4">
               ->HazardCurves:<HDF5 group "/Site15022/Vs1100/HazardCurves" (23 members)>
                    +attr: ReturnPeriods ['50.862' '99.499' '474.561' '949.118' '999.500' '2474.911' '5000.000'
           '10000.000'1
                  ->-1.0:<HDF5 dataset "-1.0": shape (8,), type "<f4">
           ...
                  ->10.0:<HDF5 dataset "10.0": shape (8,), type "<f4">
               ->MagnitudeBar_Data_atRP:<HDF5 group "/Site15022/Vs1100/MagnitudeBar_Data_atRP"
           (23 members)>
                    +attr: ReturnPeriods ['50.862' '99.499' '474.561' '949.118' '999.500' '2474.911' '5000.000'
           '10000.000']
                  ->-1.0:<HDF5 dataset "-1.0": shape (8,), type "<f4">
                  ->10.0:<HDF5 dataset "10.0": shape (8,), type "<f4">
               ->PeriodList:<HDF5 dataset "PeriodList": shape (23,), type "<f4">
               ->RP_yrList:<HDF5 dataset "RP_yrList": shape (8,), type "<f4">
               ->ResponseSpectra:<HDF5 group "/Site15022/Vs1100/ResponseSpectra" (8 members)>
                    +attr: PeriodList [ 0.01 0.02 0.03 0.04 0.05 0.075 0.1 0.15 0.2 0.25
            0.3 0.4 0.5 0.75 1. 1.5 2. 3. 4. 5. 7.5 10. -1.
                  ->10000.000:<HDF5 dataset "10000.000": shape (23,), type "<f4">
            . . .
                  ->999.500:<HDF5 dataset "999.500": shape (23,), type "<f4">
               ->ReturnPeriods:<HDF5 dataset "ReturnPeriods": shape (), type "|O">
               ->TestingLevels:<HDF5 dataset "TestingLevels": shape (8,), type "<f4">
```

11.6 Uniform-Hazard Spectra Data: Deaggregation Data (*UHSoutput.txt output)

Table 11.6. Uniform-Hazard Spectra Data: Deaggregation Data

First	DeaggrData _250sitesInFile_Site00001toSite00250.HDF5
Filename	
Last	DeaggrData_250sitesInFile_Site19251toSite19316.HDF5
Filename	
File	HDF5
Format	
Number	78
of Files	
Sample	sample key: Site15022
File	->Vs1100: <hdf5 "="" (23="" group="" members)="" site15022="" vs1100"=""></hdf5>
Content	+attr: DeaggregationInputFile Site15022/HazRuns/Vs1100/Run_UHS.txt
	+attr: InputFilename Site15022/HazRuns/Vs1100/Run_UHS.txt
	+attr: NHazardLevels 8
	+attr: UHSdataFilename \Output_UHS_Processed/Site15022/Vs1100\Vs1100\Site15022-
	Vs1100-noDir-UHSoutput.txt
	+attr: Version *** Version 45.1***
	->-1.0: <hdf5 "="" (8="" -1.0"="" group="" members)="" site15022="" vs1100=""></hdf5>
	->10000.0: <hdf5 "="" (3="" -1.0="" 10000.0"="" group="" members)="" site15022="" vs1100=""></hdf5>
	+attr: AEP 0.0001
	->DeaggregationTable: <hdf5 "<f8"="" "deaggregationtable":="" (13,="" 8),="" dataset="" shape="" type=""></hdf5>
	+attr: DeaggregationTableColumns MagnitudeBins
	+attr: DeaggregationTableRows DistanceBins
	->DistanceBins: <hdf5 "distancebins":="" " o"="" (13,),="" dataset="" shape="" type=""></hdf5>
	->MagnitudeBins: <hdf5 "magnitudebins":="" " o"="" (8,),="" dataset="" shape="" type=""></hdf5>
	->2474.911: <hdf5 "="" (3="" -1.0="" 2474.911"="" group="" members)="" site15022="" vs1100=""></hdf5>
	+attr: AEP 0.00040406
	->DeaggregationTable: <hdf5 "<f8"="" "deaggregationtable":="" (13,="" 8),="" dataset="" shape="" type=""></hdf5>
	+attr: DeaggregationTableColumns MagnitudeBins
	+attr: DeaggregationTableRows DistanceBins
	->DistanceBins: <hdf5 "distancebins":="" " o"="" (13,),="" dataset="" shape="" type=""></hdf5>
	->MagnitudeBins: <hdf5 "magnitudebins":="" " o"="" (8,),="" dataset="" shape="" type=""></hdf5>

11.7 Uniform-Hazard Spectra Data: Directivity Amplification Factor (*UHSoutput.txt output)

Table 11.7. UHS Data – Directivity Amplification Factor

First	UHSpsaDataRatio_250sitesInFile_Site00001toSite00250.HDF5
Filename	
Last	UHSpsaDataRatio_250sitesInFile_Site19251toSite19316.HDF5
Filename	
File	HDF5
Format	
Number	78
of Files	

Sample	sample key: Site15022
File	->Vs1100: <hdf5 "="" (8="" group="" members)="" site15022="" vs1100"=""></hdf5>
Content	->10000.000: <hdf5 "="" (3="" 10000.000"="" group="" members)="" site15022="" vs1100=""></hdf5>
	->DirectivityRatio: <hdf5 "<f4"="" "directivityratio":="" (10,),="" dataset="" shape="" type=""></hdf5>
	+attr: PeriodList [0.5 0.75 1. 1.5 2. 3. 4. 5. 7.5 10.]
	->DirectivityRatio_noUnityLB: <hdf5 "directivityratio_nounitylb":="" (10,),<="" dataset="" shape="" th=""></hdf5>
	type " <f4"></f4">
	+attr: PeriodList [0.5 0.75 1. 1.5 2. 3. 4. 5. 7.5 10.]
	->PeriodList: <hdf5 "<f4"="" "periodlist":="" (10,),="" dataset="" shape="" type=""></hdf5>
	->2474.911: <hdf5 "="" (3="" 2474.911"="" group="" members)="" site15022="" vs1100=""></hdf5>
	->DirectivityRatio: <hdf5 "<f4"="" "directivityratio":="" (10,),="" dataset="" shape="" type=""></hdf5>
	+attr: PeriodList [0.5 0.75 1. 1.5 2. 3. 4. 5. 7.5 10.]
	->DirectivityRatio_noUnityLB: <hdf5 "directivityratio_nounitylb":="" (10,),<="" dataset="" shape="" th=""></hdf5>
	type " <f4"></f4">
	+attr: PeriodList [0.5 0.75 1. 1.5 2. 3. 4. 5. 7.5 10.]
	->PeriodList: <hdf5 "<f4"="" "periodlist":="" (10,),="" dataset="" shape="" type=""></hdf5>
	->999.500: <hdf5 "="" (3="" 999.500"="" group="" members)="" site15022="" vs1100=""></hdf5>
	->DirectivityRatio: <hdf5 "<f4"="" "directivityratio":="" (10,),="" dataset="" shape="" type=""></hdf5>
	+attr: PeriodList [0.5 0.75 1. 1.5 2. 3. 4. 5. 7.5 10.]
	->DirectivityRatio_noUnityLB: <hdf5 "directivityratio_nounitylb":="" (10,),<="" dataset="" shape="" th=""></hdf5>
	type " <t4"></t4">
	+attr: PeriodList [0.5 0.75 1. 1.5 2. 3. 4. 5. 7.5 10.]
	->PeriodList: <hdf5 "<f4"="" "periodlist":="" (10,),="" dataset="" shape="" type=""></hdf5>
	-> Vs180 : <hdf5 "="" (8="" group="" members)="" site15022="" vs180"=""></hdf5>
	->10000.000: <hdf5 "="" (3="" 10000.000"="" group="" members)="" site15022="" vs180=""></hdf5>
	->DirectivityRatio: <hdf5 "<t4"="" "directivityratio":="" (10,),="" dataset="" shape="" type=""></hdf5>
	+attr: PeriodList $\begin{bmatrix} 0.5 & 0.75 & 1. & 1.5 & 2. & 3. & 4. & 5. & 7.5 & 10. \end{bmatrix}$
	->DirectivityRatio_noUnityLB: <hdf5 "directivityratio_nounitylb":="" (10,),<="" dataset="" shape="" th=""></hdf5>
	type " <t4"></t4">
	+attr: PeriodList [$0.5 \ 0.75 \ 1. \ 1.5 \ 2. \ 3. \ 4. \ 5. \ 7.5 \ 10. \]$
	->PeriodList: <hdf5 "<math="" "periodlist":="" (10,),="" dataset="" shape="" type=""><14"></hdf5>
	->24/4.911: <hdf5 "="" (3="" 24="" 4.911"="" group="" members)="" site15022="" vs180=""></hdf5>

11.8 Uniform-Hazard Spectra Data: All -- No-Directivity PSA, With-Directivity PSA, and Directivity-Amplification Factors at all Sites, VS30s, and Periods (*UHSoutput.txt output)

Table 11.8. Source-Hazard Data – All: noDir and Dir

First	UHSpsaDirectivityAll _SourceHazardAllDirNoDir_250sitesInFile_Site00001toSite00250.HDF5
Filename	
Last	UHSpsaDirectivityAll _SourceHazardAllDirNoDir_250sitesInFile_Site19251toSite19316.HDF5
Filename	
File	HDF5
Format	
Number	78
of Files	

Sample	sample key: Site15022
File	->Vs1100: <hdf5 "="" (8="" group="" members)="" site15022="" vs1100"=""></hdf5>
Content	+attr: PeriodList [0.01 0.02 0.03 0.04 0.05 7.5 101.]
	+attr: ReturnPeriods ['50.862' '99.499' '474.561' '949.118' '999.500' '2474.911' '5000.000'
	'10000.000']
	->10000.000: <hdf5 "="" (2="" 10000.000"="" group="" members)="" site15022="" vs1100=""></hdf5>
	->Directivity: <hdf5 "="" (2="" 10000.000="" directivity"="" group="" members)="" site15022="" vs1100=""></hdf5>
	->Vs1100: <hdf5 "="" (4="" 10000.000="" directivity="" group="" members)="" site15022="" vs1100="" vs1100"=""></hdf5>
	->DirectivityRatioList: <hdf5 "<f8"="" "directivityratiolist":="" (23,),="" dataset="" shape="" type=""></hdf5>
	+attr: PeriodList [0.01 0.02 0.03 0.04 0.05 7.5 101.]
	->DirectivityRatioList_noLB: <hdf5 "directivityratiolist_nolb":="" (23,),<="" dataset="" shape="" td=""></hdf5>
	type " <f8"></f8">
	+attr: PeriodList [0.01 0.02 0.03 0.04 0.05 7.5 101.]
	->PeriodList: <hdf5 "<f4"="" "periodlist":="" (23,),="" dataset="" shape="" type=""></hdf5>
	+attr: PeriodList [0.01 0.02 0.03 0.04 0.05 7.5 101.]
	-> UHSDirectivity : <hdf5 "<f8"="" "uhsdirectivity":="" (23,),="" dataset="" shape="" type=""></hdf5>
	+attr: PeriodList [0.01 0.02 0.03 0.04 0.05 7.5 101.]
	->Vs760: <hdf5 "="" (4="" 10000.000="" directivity="" group="" members)="" site15022="" vs1100="" vs760"=""></hdf5>
	->DirectivityRatioList: <hdf5 "<f8"="" "directivityratiolist":="" (23,),="" dataset="" shape="" type=""></hdf5>
	+attr: PeriodList [0.01 0.02 0.03 0.04 0.05 7.5 101.]
	->DirectivityRatioList_noLB: <hdf5 "directivityratiolist_nolb":="" (23,),<="" dataset="" shape="" td=""></hdf5>
	type " <f8"></f8">
	+attr: PeriodList [0.01 0.02 0.03 0.04 0.05 7.5 101.]
	-> PeriodList : <hdf5 "<f4"="" "periodlist":="" (23,),="" dataset="" shape="" type=""></hdf5>
	+attr: PeriodList [0.01 0.02 0.03 0.04 0.05 7.5 101.]
	-> UHSDirectivity : <hdf5 "<f8"="" "uhsdirectivity":="" (23,),="" dataset="" shape="" type=""></hdf5>
	+attr: PeriodList [0.01 0.02 0.03 0.04 0.05 7.5 101.]
	->noDirectivity: <hdf5 "="" (1="" 10000.000="" group="" members)="" nodirectivity"="" site15022="" vs1100=""></hdf5>
	->UHSnoDirectivity: <hdf5 "<f4"="" "uhsnodirectivity":="" (23,),="" dataset="" shape="" type=""></hdf5>
	+attr: PeriodList [0.01 0.02 0.03 0.04 0.05 7.5 101.]

11.9 Deaggregation Data (*UHSoutput.txt output)

Table 11.9. Deaggregation Data

First	DeaggrData_250sitesInFile_Site00001toSite00250.HDF5
Filename	
Last	DeaggrData_250sitesInFile_Site19251toSite19316.HDF5
Filename	
File	HDF5
Format	
Number	78
of Files	

Sample	sample key: Site15022
File	->Vs1100: <hdf5 "="" (23="" group="" members)="" site15022="" vs1100"=""></hdf5>
Content	+attr: DeaggregationInputFile Site15022/HazRuns/Vs1100/Run_UHS.txt
	+attr: InputFilename Site15022/HazRuns/Vs1100/Run_UHS.txt
	+attr: NHazardLevels 8
	+attr: UHSdataFilename /Site15022/Vs1100\Vs1100\Site15022-Vs1100-noDir-UHSoutput.txt
	+attr: Version ***Version45.1***
	->-1.0: <hdf5 "="" (8="" -1.0"="" group="" members)="" site15022="" vs1100=""></hdf5>
	->10000.0: <hdf5 "="" (3="" -1.0="" 10000.0"="" group="" members)="" site15022="" vs1100=""></hdf5>
	+attr: AEP 0.0001
	->DeaggregationTable: <hdf5 "<f8"="" "deaggregationtable":="" (13,="" 8),="" dataset="" shape="" type=""></hdf5>
	+attr: DeaggregationTableColumns MagnitudeBins
	+attr: DeaggregationTableRows DistanceBins
	->DistanceBins: <hdf5 "distancebins":="" " o"="" (13,),="" dataset="" shape="" type=""></hdf5>
	->MagnitudeBins: <hdf5 "magnitudebins":="" " o"="" (8,),="" dataset="" shape="" type=""></hdf5>
	->2474.911: <hdf5 "="" (3="" -1.0="" 2474.911"="" group="" members)="" site15022="" vs1100=""></hdf5>
	+attr: AEP 0.00040406
	->DeaggregationTable: <hdf5 "<f8"="" "deaggregationtable":="" (13,="" 8),="" dataset="" shape="" type=""></hdf5>
	+attr: DeaggregationTableColumns MagnitudeBins
	+attr: DeaggregationTableRows DistanceBins
	->DistanceBins: <hdf5 "distancebins":="" " o"="" (13,),="" dataset="" shape="" type=""></hdf5>
	->MagnitudeBins: <hdf5 "magnitudebins":="" " o"="" (8,),="" dataset="" shape="" type=""></hdf5>

11.10 Ground-Motion-Model Hazard Curves (*.out6 data)

Table 11.10. Ground-Motion Model Hazard Curves

First	GMMHaz_GMMHazard_250sitesInFile_Site00001toSite00250.HDF5
Filename	
Last	GMMHaz_GMMHazard_250sitesInFile_Site19251toSite19316.HDF5
Filename	
File	HDF5
Format	
Sample	sample key: Site15022
File	->Vs1100: <hdf5 "="" (23="" group="" members)="" site15022="" vs1100"=""></hdf5>
Content	-> PGV : <hdf5 "="" (3="" group="" members)="" pgv"="" site15022="" vs1100=""></hdf5>
	->AmpList: <hdf5 "<f4"="" "amplist":="" (20,),="" dataset="" shape="" type=""></hdf5>
	->GMModelHazard: <hdf5 "<f4"="" "gmmodelhazard":="" (28,="" 20),="" dataset="" shape="" type=""></hdf5>
	->GMModelLabel: <hdf5 "<i4"="" "gmmodellabel":="" (28,),="" dataset="" shape="" type=""></hdf5>
	-> T00010 : <hdf5 "="" (3="" group="" members)="" site15022="" t00010"="" vs1100=""></hdf5>
	->AmpList: <hdf5 "<f4"="" "amplist":="" (20,),="" dataset="" shape="" type=""></hdf5>
	->GMModelHazard: <hdf5 "<f4"="" "gmmodelhazard":="" (45,="" 20),="" dataset="" shape="" type=""></hdf5>
	->GMModelLabel: <hdf5 "<i4"="" "gmmodellabel":="" (45,),="" dataset="" shape="" type=""></hdf5>

11.11 Directivity-Model Hazard Curves (*.out6 data)

Table 11.11. Directivity-Model Hazard Curves

First	DirectivityModelHaz_DirModelHazard_250sitesInFile_Site00001toSite00250.HDF5
Filename	

Last	DirectivityModelHaz_DirModelHazard_250sitesInFile_Site19251toSite19316.HDF5
Filename	
File	HDF5
Format	
Sample	sample key: Site15022
File	->Vs1100_Dir: <hdf5 "="" (10="" group="" members)="" site15022="" vs1100_dir"=""></hdf5>
Content	-> T00500 : <hdf5 "="" (3="" group="" members)="" site15022="" t00500"="" vs1100_dir=""></hdf5>
	->AmpList: <hdf5 "<f4"="" "amplist":="" (20,),="" dataset="" shape="" type=""></hdf5>
	->DirectivityModelHazard: <hdf5 "directivitymodelhazard":="" (5,="" 20),="" dataset="" shape="" td="" type<=""></hdf5>
	" <f4"></f4">
	->DirectivityModelLabel: <hdf5 "directivitymodellabel":="" " o"="" (5,),="" dataset="" shape="" type=""></hdf5>
	-> T00750 : <hdf5 "="" (3="" group="" members)="" site15022="" t00750"="" vs1100_dir=""></hdf5>
	->AmpList: <hdf5 "<f4"="" "amplist":="" (20,),="" dataset="" shape="" type=""></hdf5>
	->DirectivityModelHazard: <hdf5 "directivitymodelhazard":="" (5,="" 20),="" dataset="" shape="" td="" type<=""></hdf5>
	" <f4"></f4">
	-> DirectivityModelLabel : <hdf5 "directivitymodellabel":="" " o"="" (5,),="" dataset="" shape="" type=""></hdf5>

11.12 Directivity-Model PSA and Directivity-Amplification Factor Hazard Curves and Uniform-Hazard Spectra (*.out6 data)

Table 11.12. Directivity-Model PSA and Directivity-Amplification Hazard Curves and UHS

First	DirectivityModelHaz_DirModelHazardRatio_250sitesInFile_Site00001toSite00250.HDF5
Filename	
Last	DirectivityModelHaz_DirModelHazardRatio_250sitesInFile_Site19251toSite19316.HDF5
Filename	
File	HDF5
Format	

Sample	sample key: Site00001
File	-> Vs760 : <hdf5 "="" (2="" group="" members)="" site00001="" vs760"=""></hdf5>
Content	->HazardCurves: <hdf5 "="" (10="" group="" hazardcurves"="" members)="" site00001="" vs760=""></hdf5>
	->T00500: <hdf5 "="" (5="" group="" hazardcurves="" members)="" site00001="" t00500"="" vs760=""></hdf5>
	->BS13: <hdf5 "="" (3="" bs13"="" group="" hazardcurves="" members)="" site00001="" t00500="" vs760=""></hdf5>
	->Amp: <hdf5 "<f4"="" "amp":="" (20,),="" dataset="" shape="" type=""></hdf5>
	->AmpRatio: <hdf5 "<f4"="" "ampratio":="" (20,),="" dataset="" shape="" type=""></hdf5>
	-> Rate : <hdf5 "<f4"="" "rate":="" (20,),="" dataset="" shape="" type=""></hdf5>
	->BS13_FaultNormal: <hdf5 group<="" th=""></hdf5>
	"/Site00001/Vs760/HazardCurves/T00500/BS13_FaultNormal" (3 members)>
	-> Amp : <hdf5 "<f4"="" "amp":="" (20,),="" dataset="" shape="" type=""></hdf5>
	->AmpRatio: <hdf5 "<f4"="" "ampratio":="" (20,),="" dataset="" shape="" type=""></hdf5>
	-> Rate : <hdf5 "<f4"="" "rate":="" (20,),="" dataset="" shape="" type=""></hdf5>
	->UniformHazardSpectra: <hdf5 "="" (2<="" 60="" group="" site00001="" th="" uniformhazardspectra"="" vs=""></hdf5>
	members)>
	->Directivity/ampKatio. <adf5 00="" <="" group="" onnormazardspectra="" sile00001="" th="" v8=""></adf5>
	10000 000: <hde5 group<="" th=""></hde5>
	"/Site00001/Vs760/UniformHazardSpectra/DirectivityAmpBatio/10000.000" (5 members)
	-SRS13: <hdf5 "<f4"="" "rs13":="" (10.)="" dataset="" shape="" type=""></hdf5>
	+attr: SpectralPeriods ['0 5' '0 75' '1 0' '1 5' '2 0' '3 0' '4 0' '5 0' '7 5' '10 0']
	->BS13 FaultNormal: <hdf5 "<f4"="" "bs13="" (10)="" dataset="" faultnormal":="" shape="" type=""></hdf5>
	+attr: SpectralPeriods ['0 5' '0 75' '1 0' '1 5' '2 0' '3 0' '4 0' '5 0' '7 5' '10 0']
	-> BS13 FaultParallel : <hdf5 "<f4"="" "bs13="" (10.),="" dataset="" faultparallel":="" shape="" type=""></hdf5>
	+attr: SpectralPeriods ['0.5' '0.75' '1.0' '1.5' '2.0' '3.0' '4.0' '5.0' '7.5' '10.0']
	-> BSS20 : <hdf5 "<f4"="" "bss20":="" (10,),="" dataset="" shape="" type=""></hdf5>
	+attr: SpectralPeriods ['0.5' '0.75' '1.0' '1.5' '2.0' '3.0' '4.0' '5.0' '7.5' '10.0']
	-> CS13 : <hdf5 "<f4"="" "cs13":="" (10,),="" dataset="" shape="" type=""></hdf5>
	+attr: SpectralPeriods ['0.5' '0.75' '1.0' '1.5' '2.0' '3.0' '4.0' '5.0' '7.5' '10.0']
	· · · · ·
	->PSA_Dir: <hdf5 "="" (8<="" group="" psa_dir"="" site00001="" th="" uniformhazardspectra="" vs760=""></hdf5>
	members)>
	->10000.000: <hdf5 group<="" th=""></hdf5>
	"/Site00001/Vs/60/UniformHazardSpectra/PSA_Dir/10000.000" (5 members)>
	\rightarrow BS13: <hdf5 "<t4"="" "bs13":="" (10,),="" dataset="" shape="" type=""></hdf5>
	+attr: SpectralPeriods $[0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 7.5, 10.0]$
	-> $BS13$ _FaultNormal: <hdf5 "<t4"="" "bs13_faultnormal":="" (10,),="" dataset="" shape="" type=""></hdf5>
	+attr: SpectralPeriods $[0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 7.5, 10.0]$

11.13 Parent-Fault Hazard Data (*.out7 data)

Table 11.13. Parent-Fault Hazard Data

First	ParentSourceHazardData_ParentSourceHazard_250sitesInFile_Site00001toSite00250.HDF5
Filename	
Last	ParentSourceHazardData_ParentSourceHazard_250sitesInFile_Site19251toSite19316.HDF5
Filename	
File	HDF5
Format	

Sample	sample key: Site15022
File	->Vs1100: <hdf5 "="" (23="" group="" members)="" site15022="" vs1100"=""></hdf5>
Content	-> PGV : <hdf5 "="" (8="" group="" members)="" pgv"="" site15022="" vs1100=""></hdf5>
	+attr: AttenuationTag 1
	+attr: Period -1.0
	+attr: PeriodLabel PGV
	+attr: SiteLatitude 39.9
	+attr: SiteLongitude -123.95
	+attr: SiteTag 1
	+attr: nAmp 20
	+attr: nAtten 1
	->AmpList: <hdf5 "<f4"="" "amplist":="" (20,),="" dataset="" shape="" type=""></hdf5>
	->HazardData: <hdf5 "<f4"="" "hazarddata":="" (139,="" 20),="" dataset="" shape="" type=""></hdf5>
	->MinDisList: <hdf5 "<f4"="" "mindislist":="" (139,),="" dataset="" shape="" type=""></hdf5>
	->Poisson_Prob_Parent: <hdf5 "<f4"="" "poisson_prob_parent":="" (20,),="" dataset="" shape="" type=""></hdf5>
	->SourceList: <hdf5 "<f4"="" "sourcelist":="" (139,),="" dataset="" shape="" type=""></hdf5>
	->Wt_Total_Events_per_yr_Parent: <hdf5 "wt_total_events_per_yr_parent":<="" dataset="" td=""></hdf5>
	shape (20,), type " <f4"></f4">
	->al_WtList: <hdf5 "<f4"="" "al_wtlist":="" (139,),="" dataset="" shape="" type=""></hdf5>
	->pSegList: <hdf5 "<f4"="" "pseglist":="" (139,),="" dataset="" shape="" type=""></hdf5>

11.14 Parent-Fault Hazard Ratio Data (*.out7 data)

First	ParentSourceHazardData_ParentSourceHazardRatio_250sitesInFile_Site00001toSite00250.HDF5
Filename	
Last	ParentSourceHazardData_ParentSourceHazardRatio_250sitesInFile_Site19251toSite19316.HDF5
Filename	
File	HDF5
Format	
Sample	sample key: Site00001
File	->Vs1100: <hdf5 "="" (23="" group="" members)="" site00001="" vs1100"=""></hdf5>
Content	->PGV: <hdf5 "="" (5="" group="" members)="" pgv"="" site00001="" vs1100=""></hdf5>
	+attr: AttenuationTag 1
	+attr: Period -1.0
	+attr: PeriodLabel PGV
	+attr: SiteLatitude 32.35
	+attr: SiteLongitude -117.2
	+attr: SiteTag 1
	+attr: nAmp 20
	+attr: nAtten 1
	->AmpList: <hdf5 "<f4"="" "amplist":="" (20,),="" dataset="" shape="" type=""></hdf5>
	->HazardData_Ratio: <hdf5 "<f4"="" "hazarddata_ratio":="" (214,="" 20),="" dataset="" shape="" type=""></hdf5>
	->Poisson_Prob_Parent: <hdf5 "<f4"="" "poisson_prob_parent":="" (20,),="" dataset="" shape="" type=""></hdf5>
	->SourceList: <hdf5 "<f4"="" "sourcelist":="" (214,),="" dataset="" shape="" type=""></hdf5>
	->Wt_Total_Events_per_yr_Parent: <hdf5 "wt_total_events_per_yr_parent":<="" dataset="" td=""></hdf5>
	shape (20,), type " <f4"></f4">

Table 11.14. Parent-Fault Hazard Ratio Data