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ABSTRACT 
 
Among the global regions that experience shallow crustal earthquakes in active tectonic regions, 
southern California is among the most seismically active and most densely instrumented. Networks 
currently operating in southern California with relatively modern (new, or with recently updated) 
sensors include the California Strong Motion Instrumentation Program (CSMIP), United States 
Geological Survey (USGS), and Southern California Seismic Network (SCSN). Research with 
substantial engineering impact, such as the NGA-West projects, has made extensive use of this 
data. A major data source in urban Los Angeles that has not been considered in these projects is 
the Community Seismic Network (CSN), which utilizes low-cost, Micro-electro-mechanical 
system (MEMS) sensors and cloud-based communications (Clayton et al. 2011, 2020). Because 
of their low cost, CSN stations are deployed at much higher density (i.e., smaller average station-
to-station spacing) than stations for other networks. CSN data are publicly available for significant 
felt earthquakes in southern California. This dense network of ground motions provides enticing 
opportunities for investigations of spatially variable ground motions and variations in source-to-
site path and site response effects over short length scales.     

We have downloaded and processed CSN data for 29 earthquakes with M > 4 from 2012 to 2023. 
This processing includes automated and visual checkers for data usability – for example, records 
for which seismic wave arrivals cannot be readily distinguished from pre-event noise are, for 
practical purposes, not usable. Records that are usable are processed using an adaptation of 
standard procedures in NGA projects in the USGS open-source program gmprocess (Hearne et al., 
2019; Ramos-Sepulveda et al. 2023). The adaptation allows for both signal-to-noise ratio and 
displacement wobble to be considered in the selection of high-pass corner frequencies (fcHP). To a 
greater extent than is typical with other modern networks, low-pass filters (with corner frequencies 
denoted fcLP) are also applied due relatively low signal-to-noise ratios at high frequencies. Based 
on this processing, each record is classified as one of the following: (1) Broadband Record (BBR) 
– relatively broad usable frequency range from fcHP < 0.5 Hz to fcLP > 10 Hz; (2) Narrowband 
Record (NBR) – limited usable frequency range relative to those for BBR; and (3) Rejected Record 
(REJ) – visual evidence suggests seismic waves cannot be distinguished from noise.  

We examine distributions of component-specific peak accelerations for BBR and REJ records and 
find that the two data sets are distinguished at a PGA of 0.005g, which correctly classifies record 
components 93% of the time. The variations in this threshold acceleration by event are nominal. 
This implies the CSN recordings at lower acceleration levels are likely to be noise-dominated, 
where “noise” is a combination of environmental and anthropogenic ambient ground vibrations, 
as well as instrument sources. The BBR / REJ threshold shaking level significantly exceeds the 
electronic instrument noise for the MEMS sensors (estimated as 0.00028 g), suggesting that the 
effective noise is influenced by ambient ground vibrations. We also examine the threshold between 
usable signals and pre-event noise and find that the two data sets are distinguished at a PGA of 
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0.0013 g, which correctly classifies record components 79% of the time. We examined time- and 
location-dependence of noise levels from CSN data using REJ records and pre-event noise. The 
results indicate nominally higher noise levels in areas of high population density (≥ 20 
people/100m2), typical of urban areas, and lower noise levels by about a factor of 1.5 in low 
population density areas. We find inconclusive temporal variations, following an investigation of 
noise-dependence on the time of day of events. We had anticipated lower noise levels in early 
morning hours and higher noise levels in afternoon to early evening hours, but the limited data do 
not reveal clear trends. Nonetheless, spatial and temporal analyses, collectively, suggest that some 
refinements to the BBR / REJ threshold may be possible, depending mainly on location.   

If we apply the 0.0015 g threshold, the limiting distances for medium-stiff soil site (VS30 = 400 m/
s) based on the expected ground motion level at the 5th-percentile are 89, 210, 280, and 370 km 
for M 5, 6, 7, and 8 events, respectively. CSN records at distances beyond these thresholds 
have a potential for under-measurement bias and likely should not be applied in ground motion 
modeling studies.

We compare recordings from co-located (within about 10m) and proximate (within 3 km) CSN 
and non-CSN (generally SCSN or CSMIP) stations. The proximate pairs are screened to only 
include cases of similar surface geology. These results show that for commonly recorded events, 
high- to medium-frequencies of ground motions (i.e., PGA and Sa for T < 5 sec) are similar for 
CSN BBR and non-CSN ground motions, whereas CSN NBR ground motions are biased slightly 
low (approximately -0.1 natural log units) for a range of periods. This indicates that the relatively 
limited frequency ranges of NBRs produce slightly biased ground motions, at least as represented 
by conventional intensity measures.      

Based on these findings, BBR and NBR ground motions from the CSN networks have been 
incorporated into the ground motion database being assembled for the ongoing NGA-West3 
project. Frequency ranges for which the data accurately capture the seismic signals are reported. 
We encourage users to screen the data appropriately for their applications to ensure that data 
selected for a given application is usable over the frequency range of interest.  
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1 Introduction 
The Community Seismic Network (CSN) is a network currently with over 800 three-component 
seismic stations, mainly in southern California (Clayton et al. 2011, 2020; http://csn.caltech.edu/), 
which are operated as a collaborative research effort between Caltech and UCLA. CSN utilizes 
low-cost, three-component, MEMS accelerometers capable of recording accelerations up to twice 
the level of gravity. The primary product of the network is measurements of shaking of the ground 
as well as upper floors in buildings, in the seconds during and following a major earthquake. 

In terms of its layout and configuration, CSN differs from other seismic networks in two principal 
respects. First, the sensors are spatially concentrated in certain parts of southern California. The 
vast majority of CSN stations are in the San Fernando Valley, Pasadena, San Gabriel Valley, 
downtown Los Angeles, Hollywood, and South Los Angeles; many of these areas have high 
densities of population or industrial activity and hence are culturally noisy. This noise takes the 
form of background ambient vibrations that have been found to depend on time (i.e., time of day, 
day of week, and season; Clayton et al. 2020). As a consequence, as currently configured the CSN 
is relatively ineffective for some classical applications like earthquake location for distant events 
or recording motions over a wide distance range, but they are effective at capturing ground motion 
characteristics over relatively short length scales (i.e., in close proximity to each other). Second, 
the instruments have relatively high noise levels compared to broadband seismometers or modern 
accelerometers.   

The effective noise levels of CSN instruments is important because recorded earthquake ground 
motions are subject to sampling errors for low amplitudes. In the case of triggered instruments, 
sampling errors occur when the ground shaking level at a site falls below the trigger threshold. In 
the case of continuously recording instruments, sampling errors occur when signal amplitudes are 
not stronger than the instrument noise threshold. This is typically the case at large distances, and 
is more pronounced for small magnitude events than large magnitude events. For a magnitude-
distance condition where the mean ground motion amplitude is near the threshold, unusually strong 
motions that exceed trigger thresholds or that fall above the noise floor are recorded. However, 
weaker motions that do not exceed trigger thresholds or that fall near the noise floor are not 
available. Accordingly, the problem is not that no records are obtained for such conditions, but 
that the recorded ground motions, and GMMs derived from those motions, become biased at large 
distances towards larger values. 

The objectives of this study were to evaluate the effective noise threshold of CSN data based on 
the currently available recordings, to validate the recordings against those from higher-resolution 
sensors, and to make available in a public database CSN data that is judged to be reliable along 
with its associated metadata. Two types of noise thresholds are considered: (1) threshold between 

http://csn.caltech.edu/
http://csn.caltech.edu/
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clear earthquake motions and signals recorded during earthquakes but for which no typical 
earthquake characteristics are visually apparent and (2) threshold between earthquake signals and 
pre-event ambient vibrations. The ambient ground vibrations considered in these analyses 
represent the combined effects of environmental and cultural sources (geological/geotechnical, 
traffic, construction, meteorological, seasonal, motors, human activity), and hardware-related 
sources (electronic, sensor and digitizer resolution, power). The thresholds presented here are 
averaged over all or portions of the network and may differ from the effective thresholds located 
in a specific, small geographical region, and for an earthquake occurring at a particular time.  
 
Chapter 2 of this report provides further background information on the CSN, the data produced 
by the network, and the events considered in this study. Additional chapters reflect the scope of 
work that was undertaken to meet project objectives, including data processing and assignment of 
classes that indicate record quality (Chapter 3), comparisons of CSN data to data from other 
networks (Chapter 4), analysis of noise recordings from CSN sensors to evaluate spatial and 
temporal variations as well as the amplitude threshold separating usable from noise-dominated 
records (Chapter 5), and identification of usable distance ranges for CSN data (Chapter 6).  
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2 CSN Overview 

2.1 CSN INSTRUMENTS AND HOUSING 

2.1.1 Station Distribution 

Over the duration of the current project, the Community Seismic Network (CSN) comprised 769 
seismic station locations, most of which are in southern California (Clayton et al., 2020). In 
addition, there are 339 previously active but now decommissioned station locations, some of which 
produced data that are evaluated. Figure 2.1 shows the locations of CSN stations overlaid on a 
regional map that also shows stations from other regional networks (CSMIP, USGS, SCSN).  

CSN utilizes low-cost, three-component, MEMS accelerometers. The primary product of the 
network is measurements of shaking of the ground as well as upper floors in buildings, in the 
seconds during and following a major earthquake. Each sensor uses a small, dedicated ARM 
processor computer running Linux, and analyzes time series data in real time at 250 samples per 
second (sps), which is then downsampled to 50 sps. Innovations in cloud computing for data 
processing, coupled with sensor developments for the video-gaming and automotive air bag 
industries, have helped form the technological basis of this network. Prior to ~2014, most CSN 
stations consisted of plug-in sensors that were attached to community hosts’ laptops and desktop 
computers; the hosts determined the deployment location and coupling. Data from these 
deployments went into the early earthquake database, but this deployment type no longer exists. 
After 2014, all CSN sensors are stand-alone devices deployed by a CSN field engineer who 
determines location and physical coupling with the floor. 

Some CSN station locations have multiple instruments. This occurs because of multiple 
instruments (referred to here as a “station”) within a structure at different heights, and in some 
cases, different locations in plan at a given height. The number of three-component instruments is 
1868, which includes 1250 ground stations, 27 basement stations, and 463 stations on floors of 
buildings above the ground line. The instrumented buildings have between 1 and 3 triaxial sensors 
deployed per floor. The sensing hardware and parameters are the same as for the free-field. There 
are no sensors on lifelines infrastructure at the present time.  

In this project we have focused on ground and basement stations and do not consider above-ground 
stations. Each of the ground-level and basement stations has been assigned an instrument housing 
code using guidelines provided in Table 6 of COSMOS (2001). That table provides two main 
categories for classifying stations (free-field and structural or array stations); within each category 
a series of specific codes are provided. This information is provided as metadata accompanying 
the CSN sites in the ground motion database (Buckreis et al. 2023a). The applicable codes that 
were applied to CSN stations are as follows:  
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1. "04" - ground-floor in a 1-2 story building without a basement (1250 CSN stations) 
2. "05" - ground-floor in a larger structure (118 CSN stations) 
3. "09" - basement or underground in a large vault (27 CSN stations) 
4. "10" - upper levels of a structure (463 CSN stations) 

 

Figure 2.1. Map of southern California showing locations of ground motion stations considered in prior 
work (NGA-West2/Bozorgnia et al. 2014 & basin study by Nweke et al. 2022) (CSMIP, USGS, SCSN) and 
CSN stations (active and decommissioned) considered in this project. 

Stations in group 04 can be considered “free-field.” Stations in 05 and 09 might be approximated 
as free-field depending on the depth of embedment (for 09) and plan size of the structure (for 05). 
The difference between the 769 figure mentioned at the start of this section and the sum of 04, 05, 
and 09 is caused by the occurrence of multiple stations at a given site at the ground level or 
basement level.  

Because this project is not only using the CSN in its current form, but also in the form it has had 
in the past, it is useful to examine the state of the network at different times. Figure 2.2 shows the 
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configuration of the network in 2013, 2015, and 2019. As shown in Figure 2.2, the initial network 
of sensors were deployed prior to 2015 and were primarily concentrated in the western-
northwestern portion of the San Gabriel Basin (Pasadena & Altadena). All of these stations used 
early desktop “plug-in” versions of sensors. There were 191 instruments in operation during this 
period (2011 - 2015), with only 13 remaining in operation. All the other station locations from that 
period had subsequently been dropped from the network due to updates in sensor configuration or 
were misplaced due to homeowner turnover. Between 2016 and 2018, an additional 360 locations 
were instrumented in the Elysian Hills, Arroyo Seco, and downtown Los Angeles (DTLA). Of 
those 360 stations, 199 remain operational. Between 2018 and 2020, 309 locations were 
instrumented in the northern portion of the Los Angeles Basin (most of South Central Los Angeles 
and East Los Angeles via LAUSD), areas around Long beach, and parts of West Los Angeles 
(Marina Del Rey, Culver City and Westwood). All of these additional stations remain operational  
Current ongoing sensor deployments are expanding coverage to the San Fernando Basin while 
improving resolution in the Los Angeles Basin. At the beginning of the project the CSN comprised 
approximately 860 seismic stations (with both operational and decommissioned sensor locations 
across the existence of the CSN) in southern California (Clayton et al. 2020), however, the network 
has expanded and added 248 station locations to date, now exceeding 1100 seismic stations.  

 
Figure 2.2. Maps showing the evolution and expansion of the CSN stations deployed in southern 
California.   
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2.1.2 MEMS Accelerometers 
The MEMS accelerometers used by CSN provide 16 bits of resolution and are capable of recording 
accelerations up to ±2g. It is classified as a class-C accelerometer. The hardware components 
needed for the operation of one station includes a Phidget 1056-1 three-axis, class-C MEMS 
accelerometer integrated with a signal conditioner/digitizer on a single chip, a Linux micro-
computer (Raspberry PI 4b or SheevaPlug), removable storage for the computer, an ethernet cord 
for internet connection, and power cables often combined with a small uninterruptible power 
source device to allow continuous operations during power outages. All the components are 
housed in a 10×10×23 cm orange box that is secured to the floor with two-sided tape pads.  
 
Instrument responses for the accelerometers are technically flat to zero frequency (DC). Early 
measurements of noise levels recorded at a relatively quiet site in Pasadena (labeled “Phidget” in 
Figure 2.3) show a constant noise level from 0.01 to 1.0 Hz, with a slight upward ramp for higher 
frequencies. However, the actual usable frequency bandwidth is controlled by individual noise 
levels at each sensor location for the specific recorded earthquake. In the case of the USB-attached 
tri-axial accelerometers, the sensors sample at rates of order 1000 measurements per sec internally 
and present data at a rate of 250 triple floats over the USB. The computer then down-samples the 
data to the lower sample rates (50 samples per sec) as a configurable option. Additional hardware 
may include a dedicated, small-form-factor, “Cloudlets processor” that computes location-specific 
situational awareness products using location-specific data streams for a defined subset of sensors; 
this processor also serves as an on-site Network Time Protocol host. 
 
The stand-alone processor frequently polls a Network Time Protocol (NTP) server and uses the 
replies from the server to maintain time synchronization; the system time offsets obtained from 
the NTP server are numerically fitted to a windowed series in order to provide an accurate 
estimated timestamp for each sample obtained from the connected sensors. The measurement of 
parameters such as the maximum waveform amplitude values with their associated timestamps, 
and the signal-to-noise measurements are made by the sensor-processor systems. This information 
and updates to it are sent over the network to the Cloud facility. 
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Figure 2.3. Noise level of CSN MEMS accelerometers (Phidgets) as compared to cell phone and episensor 
accelerometers. Fourier spectra for earthquakes of different magnitudes and for average (approximately 
firm soil) site conditions shown for comparison, which suggests usable bandwidths of 1-8 Hz, 0.2-15 Hz, 
and 0.1-20 Hz for earthquakes at regional distances for M 4.5, 5.5, and 6.5 earthquakes, respectively. 
Source: Clayton et al. (2011).  

 

2.1.3 Data Transmittal to Central Server 
The stations are connected to the internet, typically via a local, on-site VPN network. They 
continuously stream data that is captured by a cloud-based facility (currently AWS S3). Clayton 
et al. (2020) describe two modes of data communication: (1) Continuous data are sent in 10 min 
intervals that include starting and ending time stamps, which in the cloud are resampled to 50 
sample/sec.; (2) When an event is detected, the stations monitor the data stream for accelerations 
that exceed 0.005g, which triggers the system, causing it to send the maximum acceleration over 
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the next 1 sec to the cloud. This continues until the signal drops below the threshold. The data 
from the second communication are used to create an evolving map of shaking across the network.  

2.2 DATA DISSEMINATION AND FORMAT 

The data sent to the AWS cloud service are processed in a similar manner to SCSN data. The raw 
waveform segments are converted to Seismic Analysis Code (SAC) binary format. The archive 
grows rapidly with time and is backed up daily on a portable disk. Data can be retrieved from the 
archive by end-users using a variation of the Seismogram Transfer Program (STP) software 
(https://scedc.caltech.edu/data/stp). When an earthquake is detected, a window of the data is 
retrieved from the continuous waveforms with STP and placed on the CSN data webpage where it 
is publicly accessible: http://csn.caltech.edu/data/. The continuous ambient vibration data are not 
publicly disseminated due to privacy concerns.  

As reported by Clayton et al. (2020) for a school site, maximum accelerations over a year-long 
period are generally in the range of 0.001 to 0.003g, but spikes of 0.01g or larger also occur when 
school is in session (students are present).  

The data for this study was retrieved from the CSN data webpage: http://csn.caltech.edu/data/. The 
data were downloaded to servers as SAC files for subsequent processing, as described in Section 
3.1.  The data in the SAC files is in binary format and units of g.  

2.3 EVENTS CONSIDERED  

Figure 2.4 shows the locations of 29 events considered in this study. We include all events recorded 
by the network with M > 4. Table 2.1 lists the events and their key attributes for engineering 
studies. Per NGA protocols (e.g., Contreras et al. 2022), seismic moment is taken from the global 
centroid moment tensor catalog (Ekström et al. 2012; https://www.globalcmt.org/) as are other 
moment tensor attributes with the exception of hypocenter location, which is taken from USGS 
(https://www.usgs.gov/programs/earthquake-hazards/earthquakes). The number of CSN records is 
the total number of records considered in this study, even if the data was ultimately deemed 
unusable. The number of non-CSN records is the number of processed records in the ground 
motion database (Buckreis et al. 2023a). 

 

http://csn.caltech.edu/data/
http://csn.caltech.edu/data/
https://www.globalcmt.org/
https://www.usgs.gov/programs/earthquake-hazards/earthquakes
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Figure 2.4. Map of CSN stations and the events they recorded. 
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Table 2.1. Earthquakes considered in present study 

 
LLocal magnitude (ML) 

  Date Name M0 (dyne-
cm) M Hypo 

Lat 
Hypo 
Long 

Hypo 
depth 
(km) 

#CSN 
recs 

# 
Non-
CSN 
recs 

1 2012-08-08 Yorba Linda 2 1.90E+22 4.12 33.904 -117.791 10.2 561 831 

2 2012-08-26 Brawley 1.64E+24 5.41 33.019 -115.54 8.3 609 198  

3 2013-03-11 Anza 1.74E+23 4.79 33.501 -116.458 10.9 576 216  

4 2013-05-29 Santa Barbara 
Channel 3.26E+23 4.97 34.406 -119.92 7.1 648 522 

5 2013-07-24 Weldon   4.29L 35.486 -118.288 6.6 675 141  

6 2013-08-25 Weldon 2 2.39E+22 4.19 35.48 -118.285 1.2 672 114  

7 2013-10-06 Joshua Tree 1.23E+22 4.03 34.709 -116.294 0.8 597 420 

8 2014-01-15 Fontana 3 5.59E+22 4.46 34.143 -117.443 2.9 423 747 

9 2014-03-17 Westwood 5.03E+22 4.43 34.134 -118.486 9.2 585 957 

10 2014-03-29 La Habra 6.29E+23 5.17 33.933 -117.916 5.1 525 1455 

11 2015-01-04 Lake Castaic 2.95E+22 4.28 34.617 -118.63 7.8 702 783 

12 2015-12-27 Johannesburg 2.96E+22 4.25 35.214 -117.282 3.2 1056 333  

13 2015-12-30 Devore 4.94E+22 4.43 34.191 -117.413 7 1059 930 

14 2016-01-06 Banning 4.80E+22 4.42 33.959 -116.888 16.7 1044 987 

15 2016-02-20 Lucerne Valley 3.68E+22 4.34 34.61 -116.629 6.7 1104 816 

16 2016-02-24 Wasco 3.32E+23 4.98 35.542 -119.373 22.1 1113 144  

17 2016-06-10 Borrego Springs 1.03E+24 5.31 33.432 -116.443 12.3 996 408  
18 2017-12-07 Julian 1.09E+22 3.96 34.148 -116.479 11.1 1488 321  

19 2018-01-25 
Trabuco 
Canyon 

1.13E+22 3.97 33.741 -117.491 11.2 1479 471 

20 2018-04-05 Santa Cruz 
Island 1.37E+24 5.39 33.82 -119.734 9.8 1197 471 

21 2018-05-08 Cabazon 6.80E+22 4.49 34.016 -116.78 12.9 1155 363 

22 2018-08-29 La Verne 3 4.66E+22 4.38 34.136 -117.775 5.5 975 456 

23 2019-07-04 Searles Valley 5.95E+25 6.48 35.705 -117.504 9.78 1608 1488 

24 2019-07-06 Ridgecrest 4.39E+26 7.06 35.77 -117.599 8 1602 2217 

25 2020-07-30 Pacoima 2.25E+22 4.17 34.302 -118.438 8.9 2112 453 

26 2020-09-19 El Monte 8.11E+22 4.54 34.038 -118.08 16.9 2115 183 

27 2021-04-05 Lennox 1.25E+22 4.03 33.941 -118.333 19.3 2118 111 

28 2021-09-18 Carson 3.29E+22 4.28 33.831 -118.264 11.9 2124 111 

29 2023-01-25 Malibu 2.44E+22 4.19 33.885 -118.705 14.7 2058 387 
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3 Data Processing and Classification 

3.1 CSN DATA PROCESSING 

3.1.1 Processing Steps 

The Next Generation Attenuation (NGA) program has developed standard steps that are used to 
process earthquake ground motions. The aim of the steps is to minimize the effects of noise on 
recorded ground motions, while optimizing the dynamic range for which a given recording can be 
considered to accurately represent the ground shaking at the site. The most recent procedures are 
described by Goulet et al. (2021) and Kishida et al. (2020), although the main elements of the 
procedure were presented earlier by Boore (2005), Boore and Bommer (2005), and Douglas and 
Boore (2011). The steps are listed below with a brief description. 

Screening of time series: Records are visually inspected to identify if a seismic signal is present. 
When records have indiscernible p- or s-waves, it indicates that noise likely prevails over the 
ground motion signal, and the record is rejected. Furthermore, any odd shapes like spurious spikes, 
multiple arrivals, and gradual intensity increase outside the p- or s-wave windows are rejected. No 
minimum number of passing components is applied during screening (e.g., when a station has only 
one or two passing components, that data is passed forward to the database). Figures 3.1 and 3.2 
show examples of rejected records because of indiscernible seismic wave arrivals and spurious 
features, respectively. 

 

Figure 3.1. Time series of acceleration (top), velocity (middle), and displacement (bottom) that are 
rejected due to lack of clear seismic wave signal (the records appear to be noise-dominated). The red 
dashed line represents the p-wave arrival time (tp). These are three components from station CJ.T000022 
from the Pacoima M4.2 earthquake. 
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Figure 3.2. Time series of acceleration (top), velocity (middle), and displacement (bottom) that are 
rejected due to spurious features (long period oscillations, about 5 sec in period). The red dashed line 
represents the p-wave arrival time (tp). These are three components from station T000011 from the 2019 
Searles Valley earthquake.  

Identify noise and signal windows: The p-wave arrival time (tp) is identified. As shown in Figure 
3.3, the time interval before the p-wave arrival is taken as the noise window, which is 60 sec in 
duration with CSN data (only a portion of this time window is shown in the figure). The time 
window containing the signal begins at tp and extends to tp+DS, where DS is the 5-95% significant 
duration, which is taken from available models (gmprocess: 95th percentile value from the Afshari 
and Stewart (2016) model, i.e. mean + 2 standard deviations; NGA: durations from older models 
as described in Section 3.2.2 of Kishida et al. 2020). A window function is applied to the noise 
and signal for subsequent steps of data processing. 
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Figure 3.3. Three-component acceleration time series for station CJ_T000503 from the 2019 Searles Valley 
earthquake (M6.48) showing p-wave arrival time (tp) as estimated from gmprocess, the preceding noise 
window, p-wave window, approximate s-wave arrival time (tS), and signal duration (DS), which is taken as 
the 95%tile value from the Afshari and Stewart 5-95% significant duration model. The start time for the s-
window is indicated for illustrative purposes only and is not directly used in the signal processing.  

Compute Fourier amplitude spectra (FAS): FAS are computed for each individual component 
using a standard set of 390 frequencies as used in the ground motion database (Buckreis et al. 
2023a). FAS are computed for both the signal and noise windows, and prior to filtering, produce 
spectra such as those shown in Figure 3.4. Because standard Fourier spectra computation routines 
(e.g. Kramer 1996) produce amplitudes that increase with increasing signal duration, there is 
potential for bias when comparing noise and signal FAS if they have different durations. To correct 
for this, each FAS is normalized by the square-root of the signal duration, which produces unusual 
units like g×sqrt(sec) or m/s1.5. 
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Figure 3.4. FAS for three-component acceleration time series’ noise (red) and signal (blue) windows. 
Example is for CSN station CJ.T000107 in the 2019 Searles Valley earthquake. Both smoothed and 
unsmoothed FAS are shown.  

High-pass filter: The selection of high-pass corner frequency (fcHP) is informed by multiple criteria. 
The initial guess of the fcHP is based on the theoretical acceleration decay at low frequency, f2 
model (Brune, 1970; Boore and Bommer, 2005); the initial selection is made where the shape of 
the signal FAS deviates from the theoretical decay (approximately 0.06 Hz for the example in 
Figure 3.4). There is some debate about whether this is an appropriate selection, as not all ground 
motions will necessarily follow this shape at low frequencies, and such selections may be 
unnecessarily conservative (i.e., filtering out too much low frequency signal). 

Also considered is the ratio of FAS for the signal and noise windows (referred to as signal-to-noise 
ratio, or SNR). A typical threshold value of SNR used in many applications is 3 (e.g., Goulet et al. 
2021, Kishida et al. 2020). It is important to recognize that the window referred to as “signal” is 
actually the sum of the true signal and noise, hence the ratio being computed is more properly 
expressed as (S+N)/N = S/N +1. Accordingly, the common threshold of SNR = 3 actually 
corresponds to a S/N ratio of 2. The example in Figure 3.4 reaches the SNR=3 threshold at 
approximately 0.1 Hz for the two horizontal components (left and center plots).  

A final check is made to ensure that when the waveform is integrated to displacement, that no 
unusual long-period fluctuations (referred to as “wobble”) are present (Boore and Bommer, 2005). 
If wobble is observed using an fcHP initially estimated from shape or SNR considerations, the user 
goes back, chooses a higher fcHP and evaluates the displacement again. The user continues this 
iterative process until the displacement waveform lacks wobble based on visual inspection or 
various numerical criteria. Figure 3.5 shows example FAS for the north-south-component of the 
record in Figure 3.4 before and after high-pass filtering. The effect of the filter is apparent from 
the decay in FAS at low frequencies. 
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Figure 3.5. FAS for east-west component acceleration time series, showing unprocessed, auto-processed 
with two tools (labeled gmprocess and GUI, as discussed further below), along with the noise spectra 
(green) and signal prior to filtering (orange). Record is from 2019 M6.48 Searles Valley earthquake, Station 
CJ.T000107.  

Low-pass filter: The processing of ground motion data from higher-resolution sensors (e.g., 
episensor seismometers as shown in Figure 2.3) often does not require the application of a low-
pass filter (used to filter out high frequency noise). Low-pass filters are not needed if the ratio 
between the maximum FAS and the FAS at 0.75fNyq > 10 (Douglas and Boore, 2011) (where fNyq 
is the Nyquist frequency). Where this condition is met, it is common that the response spectra 
saturate to PGA and there are no unrealistic high-frequency spikes. Because of the relatively high 
noise levels for data from the Phidgets instruments and environments associated with the station 
locations (Figure 2.3), low-pass filters were used more frequently than with other modern sensors. 
Low-pass filtering is performed with a corner frequency (fcLP) typically taken as the smaller of 
0.75×fNyq or the frequency where SNR falls below a threshold. The data in Figure 3.5 was low-
pass filtered at a corner frequency of fcLP = 11.8 Hz. 

Baseline correction: The acceleration is integrated in the time domain (Nigam and Jennings 1969) 
to obtain velocity and integrated a second time to obtain displacement, with initial values assumed 
to be zero. The baseline drift that is sometimes encountered by assuming initial values of zero is 
later corrected with the baseline correction procedure explained in Boore et al. (2012). 

3.1.2 Processing Tool 

We used the U.S. Geological Survey (USGS) open-source ground motion processing tool, 
gmprocess (Hearne et al., 2019), to perform the processing steps described in Section 3.1.1. This 
tool was used in a semi-automated mode that was enabled by several revisions that were 
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undertaken in nearly coincident work at UCLA in collaboration with USGS (Ramos-Sepulveda et 
al. 2023). The default options when gmprocess is executed in a fully automated manner are as 
follows: 

Screening: Time series are first screened to ensure they meet the following configurable 
requirements: (1) free-field stations, (2) both horizontal components are available, (3) 
minimum sampling rate of 20 Hz, (4) minimum of 0.1 zero crossings per second after 
demeaning the raw time series, and (5) SNR must be greater than 3 from the Brune (1970) 
corner frequency to 5 Hz. 

Noise and signal windows: The p-wave arrival is estimated from a travel-time calculation 
using the velocity model of Kennet et al. (1991). The signal window duration is estimated 
as the mean plus two standard deviation 5-95% significant duration from Afshari and 
Stewart (2016), and 60 seconds of pre-event noise is included for the purpose of computing 
SNR.  

High- and low-pass filters: High-pass corner frequency fcHP is set as the lowest frequency 
where SNR = 3. For low-pass filtering, the default is to not apply a filter. 

We use an SNR=1 criterion for high-pass filtering as an initial guess to estimate fcHP. This guess 
is then refined using a routine described in Ramos-Sepulveda et al. (2023) and implemented in 
gmprocess that removes displacement wobble in an iterative manner by fitting a polynomial to the 
displacement waveform that is subtracted from the data in the time-domain. Moreover, we do not 
apply the low-frequency spectral shape criterion discussed in Section 3.1.1. These steps are applied 
in an automated manner in gmprocess, which produces an h5 file that contains the original and 
processed records. 

The data are then visualized using a GUI tool (Ramos-Sepulveda et al. 2023) to ensure that filtered 
records are reasonable with respect to FAS shape, Sa shape, and displacement wobble. These 
visual inspections check for the same features considered in standard procedures (Section 3.1.1). 
The GUI allows the salient features to be observed and for users to adjust fcHP and fcLP as needed. 
Once a record is approved, the GUI allows records to be saved in an .h5 file format. The final step 
that precedes uploading the data to the database is calculation of median and maximum component 
peak ground motions and response spectra (RotD50 and RotD100, respectively; Boore 2010) using 
the RCTC code by Wang et al. (2017), as well as calculation of effective amplitude spectra, which 
are an orientation-independent measure of FAS conceptually similar to RotD50 (Goulet et al. 
2021). 

The data processing work conducted as part of this project occurred coincident with several 
changes being implemented in gmprocess, including the revisions described by Ramos-Sepulveda 
et al. (2023) and a major update that corrected a prior error in Fourier amplitude calculations (in 
the earlier version, the data were not normalized by the square-root of duration). The 2nd and 1st 
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authors, along with Scott Brandenberg, were in contact with the gmprocess team regarding several 
issues that came about when applying the tool to CSN data. These issues include the following: 

● Gmprocess was originally developed for compatibility with Mac and Linux systems. To 
enable a windows installation, prerequisite software that needs to be installed in the 
Windows system, including a C compiler (e.g. Windows SDK C/C++ compiler) and Git 
(or Anaconda prompt). Revisions were made to streamline windows installation of the tool. 

● While the units in the sac file output from gmprocess were known to be in g, the results 
plotted in gmprocess were non-physical (motions too large). We developed fixes that apply 
to all sac file inputs in the configuration file; these changes are now integrated into the 
main gmprocess tool. 

We used non-default (lower) values for SNR thresholds in the config.sys file when running 
gmprocess in automated mode (prior to GUI data inspections). This was done to pass records 
through to the GUI for visual inspection, corner frequency selections, and classification (Section 
3.3). Otherwise, large numbers of CSN records were screened out and hence could not efficiently 
be inspected and evaluated. For similar reasons, we disabled the check noted above that SNR must 
be greater than 3 from the Brune (1970) corner frequency to 5 Hz. 

3.2 NON-CSN DATA PROCESSING 

All of the CSN data considered in the present work was processed using the procedures described 
in Section 3.1. Because a portion of this project includes comparison of CSN and non-CSN data 
for common events, we performed processing of non-CSN data for events that did not already have 
ground motions in the ground motion database. These events were 2013 M4.79 Anza, 2012 M5.41 
Brawley, 2013 ML4.29 Weldon, 2013 M4.19 Weldon2, 2015 M4.25 Johannesburg, 2016 M4.98 
Waso, 2016 M5.31 Borrego Springs, 2017 M3.96 Julian, 2018 M3.97 Trabuco Canyon, 2018 
M5.39 Santa Cruz Island, 2018 M4.49 Cabazon, 2018 M4.38 La Verne 3, 2020 M4.17 Pacoima, 
2020 M4.54 El Monte, 2021 M4.03 Lennox, 2021 M4.28 Carson, and 2023 M4.19 Malibu. 

The non-CSN data were processed using an R code that has been used for record processing on 
multiple NGA projects including NGA-West2, NGA-East, and NGA-Subduction (Bozorgnia et al. 
2014, Goulet et al. 2021, Bozorgnia et al. 2022, respectively). The code applies the procedures 
described in Section 3.1.1, but with the following features (details in Kishida et al. 2020): 

Screening: Time series are screen visually to check for noise-dominance or spurious 
features. 

Noise and signal windows: The p-wave arrival is identified manually, generally from the 
vertical-component ground motion. The p-to-s-wave arrival time difference is estimated 
based on hypocentral distance and adjusted based on visual inspection, as needed. The s-
wave duration is evaluated from models for source and path duration. 
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High- and low-pass filters: High-pass corner frequency fcHP is selected in consideration of 
SNR, removing displacement wobble (through iterative analysis), and often based on shape 
to avoid flat portions of the FAS at low frequencies. We did not apply the FAS shape 
criterion when selecting fcHP. The use of a low-pass filter was generally not required.    

As with the data saved from the GUI, the R output is used to compute intensity measures, including 
EAS, which were then uploaded to the database. Whereas the 2nd author performed most of the 
processing of CSN data, the 4th author performed most of the processing of non-CSN data. As a 
quality-control check, some data was jointly processed by both students, which served as a training 
exercise that improved the understanding of the relevant methods for both. After this exercise, the 
results from the two students for a common data set were similar. 

3.3 CSN DATA CLASSIFICATION 

In our evaluations of the CSN data, we observed three general categories of records. The “best” 
records (BBR) clearly reflect earthquake shaking, having waveforms where the different wave 
arrivals are evident and modest effects of noise. Records deemed unusable (REJ) appear to be 
noise dominated, generally based on visual inspection of time series, but sometimes also from 
similar levels of signal and noise FAS. The intermediate case (NBR) consists of records that have 
the visual appearance of earthquakes, but the signal is of modest strength in comparison to noise 
and the record bandwidths are relatively limited. 

In order to achieve project objectives as outlined in Chapter 1, it was necessary to identify criteria 
distinguishing BBR and NBR. Specifically, assignment of BBR, NBR, or REJ to each record was 
required for threshold analyses (Section 3.4) and data comparisons (Chapter 4). After some trial 
and error, the category definitions we adopted were as follows: 

1. BBR: relatively broad usable frequency range from fcHP < 0.5 Hz to fcLP > 10 Hz 
2. NBR: limited usable frequency range because corner frequencies do not meet the criteria 

for BBR (i.e., fcHP > 0.5 Hz or fcLP < 10 Hz) 
3. REJ: visual evidence suggests seismic waves cannot be distinguished from noise 

Figures 3.6-3.8 show examples of records assigned to BBR, NBR, and REJ, respectively. In each 
case the figures are plots generated by gmprocess. At the top of each column an indication is given 
of whether the record “passed” or “failed” depending on criteria described in Section 3.1.2. Corner 
frequencies applied in the filtering are those from automated algorithms, and as a result, there are 
cases where displacement wobble occurs that would be removed in subsequent processing via the 
GUI.  In Figure 3.6 the signal FAS exceeds that from noise over a wide frequency range. In Figure 
3.7, the signal FAS exceeds that from noise over a narrower frequency range – in particular the 
values of fcHP are > 0.5 Hz, which causes the NBR assignment. In Figure 3.8, the signal FAS is 
generally similar to, or in some cases below, the noise FAS. Those relative amplitudes, along with 
the obvious effects of noise in the time series, are the reason for the REJ assignment.   
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Figure 3.6. Plots from gmprocess showing three-component records from the 2019 Ridgecrest earthquake 
in which each component was assigned as BBR and the filter corners were automatically selected within 
gmprocess. The top three rows are time series, the fourth row is FAS, and the bottom row is SNR. In the 
time series plots, the vertical red line indicates p-wave arrival. In the FAS plots, raw and smoothed FAS 
are shown for the signal (blue) and noise (red). The dashed black curve indicates a Brune spectrum fit to 
the signal FAS with the corner frequency indicated by the vertical dashed line.  
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Figure 3.7. Plots from gmprocess showing three-component records from the 2020 El Monte earthquake 
in which each component was assigned as NBR and the filter corners were automatically selected within 
gmprocess. The top three rows are time series, the fourth row is FAS, and the bottom row is SNR. In the 
time series plots, the vertical red line indicates p-wave arrival. In the FAS plots, raw and smoothed FAS 
are shown for the signal (blue) and noise (red). The dashed black curve indicates a Brune spectrum fit to 
the signal FAS with the corner frequency indicated by the vertical dashed line.  

 



21 
 

 

Figure 3.8. Plots from gmprocess showing three-component records from the 2020 Pacoima earthquake 
in which each component was assigned as REJ. No filtering was applied because the record failed screening 
criteria. The top three rows are time series, the fourth row is FAS, and the bottom row is SNR. In the time 
series plots, the vertical red line indicates p-wave arrival. In the FAS plots, raw and smoothed FAS are 
shown for the for the signal (blue) and noise (red). The dashed black curve indicates a Brune spectrum fit 
to the signal FAS with the corner frequency indicated by the vertical dashed line. 

Table 3.1 indicates the number of CSN individual-component recordings in each category for each 
of the 29 considered events. The number of usable ground motions for modeling purposes, which 
combine horizontal components typically as RotD50, are approximately ½ to 1/3 of the numbers 
shown in Table 3.1.  

For some events (e.g., 2019 Searles Valley, 2019 Ridgecrest, and 2020 El Monte), large pluralities 
of ground motions have usable bandwidth (BBR and NBR), whereas for others (2013 Weldon and 
Joshua Tree) all records are rejected based on the criteria presented in Section 3.1.  Figure 3.9 
illustrates the reason for these discrepancies by showing BBR (green), NBR (yellow), and REJ 
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(red) records in distance-magnitude space. In the upper-left portion of the plot (large magnitude or 
close distances for M < 5 events), most records are BBR, whereas the lower-right portions (M < 5 
event and distances > 50-100 km) are REJ. Clearly the level of ground shaking strongly affects the 
classifications. This is also reflected in summary statistics for the data set. Among events since 
2018, large-magnitude events and events generally closer than 70-80 km from the network 
(Malibu, Carson, Lennox, El Monte, Pacoima, Searles Valley, Ridgecrest, La Verne) have the 
following aggregate component record classifications:  

● Usable records (BBR and NBR): 5784 (60%) (1122 BBR, 4662 NBR) 
● Rejected records: 3858 (40%) 

The database as a whole, which includes many events with small magnitude and large distances, 
breaks down as  

● Usable records (BBR and NBR): 9948 (45.7%) (1446 BBR, 8502 NBR) 
● Rejected records: 11801 (54.3%) 

 

Figure 3.9. Record classification as function of distance and magnitude 
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Table 3.1. Numbers of BBR, NBR, and REJ ground motion components for the earthquakes considered in 
present study – horizontal components (vertical components) 

Date Name M Distance 
Range (km) 

# CSN BBR 
comp. 

# CSN NBR 
comp. 

# CSN REJ 
components 

2012/08/08 Yorba Linda 2 4.12 16 - 56  0 (0) 53 (6)  321 (181) 
 

2012/08/26 Brawley 5.41 198 - 293  0 (0)  2 (0)  404 (203) 

2013/03/11 Anza 4.79 98 - 199  0 (1)  145 (12)  238 (179) 

2013/05/29 Santa Barbara 
Channel 

4.97 136 - 238  2 (0)  2 (2)  428 (214) 

2013/07/24 Weldon 3.84⟊ 139 - 208 0 (0) 0 (0) 450 (225) 

2013/08/25 Weldon 2 4.19 138 - 208 0 (0) 0 (0) 448 (224) 

2013/10/06 Joshua Tree 4.03 131 - 215 0 (0) 0 (0) 398 (199) 

2014/01/15 Fontana 3 4.46 40 - 92 0 (0) 127 (5) 155(136) 

2014/03/17 Westwood 4.43 9 - 79 38 (5) 295 (120) 22 (70) 

2014/03/29 La Habra 5.17 10 - 129 270 (102) 56 (43) 22 (30) 

2015/01/04 Lake Castaic 4.28 43 - 111 0 (0) 190 (4) 278 (230) 

2015/12/27 Johannes- 
burg 

4.25 132 - 181 0 (1) 242 (4) 462 (347) 

2015/12/30 Devore 4.43 49 - 106 0 (1) 84 (2) 621 (350) 

2016/01/06 Banning 4.42 92 - 155 0 (0) 175 (3) 520 (345) 

2016/02/20 Lucerne Valley 4.34 131 - 187 0 (0) 94 (1) 642 (367) 
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2016/02/24 Wasco 4.98 171 - 202 0 (0) 201 (5) 541 (366) 

2016/06/10 Borrego 
Springs 

5.31 159 - 211 12 (0) 578 (101) 74 (231) 

2017/12/07 Julian 3.96 155 - 219 0 (0) 1 (0) 991 (496) 

2018/01/25 Trabuco 
Canyon 

3.97 55 - 106 0 (0) 348 (17) 638 (476) 

2018/04/05 Santa Cruz 
Island 

5.39 119 - 171 2 (0) 582 (21) 214 (378) 

2018/05/08 Cabazon 4.49 112 - 154 0 (0) 665 (0) 58 (385) 

2018/08/29 La Verne 3 4.38 22 - 61 9 (1) 427 (72) 214 (252) 

2019/07/04 Searles Valley 6.48 161 - 193 245 (40) 733 (316) 84 (180) 

2019/07/06 Ridgecrest 7.06 167 - 205 599 (248) 446 (266) 11 (20) 

2020/07/30 Pacoima 4.17 23 - 67 3 (0) 950 (43) 445 (661) 

2020/09/19 El Monte 4.54 17 - 43 265 (3) 1022 (387) 20 (315) 

2021/04/05 Lennox 4.03 19 - 40 1 (0) 434 (0) 964 (706) 

2021/09/18 Carson 4.28 11 - 44 0 (0) 28 (0) 1388 (708) 

2023/01/25 Malibu 4.19 28 - 63 0 (0) 622 (8) 750 (678) 

⟊Southern California Earthquake Data Center (SCEDC) 

3.4 CSN USABLE AMPLITUDE THRESHOLD  

As shown in Figure 2.3 and in example ground motion plots (Figures 3.1 and 3.8), the effects of 
noise on CSN data are more significant than what many ground motion specialists are accustomed 
to from their analyses of data from relatively modern instruments. As such, it is important to 
establish a threshold level of ground motion that separates CSN earthquake signals (BBR or NBR) 
from noise-dominated data (REJ signals or pre-event noise). In this section, we address this 
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question on a network-wide level using the ground motion parameter of individual-component 
PGA. Individual components are used in lieu of combinations of components (e.g. RotD50) 
because for some stations individual components can have different classifications. Various 
intensity measures were considered for the derivation of this threshold and PGA was found to be 
the most effective intensity measure. Only data from ground level instruments (COSMOS codes 4 
and 5) are considered.  

3.4.1 Threshold Between BBR and REJ 

The threshold ground motion level is evaluated to distinguish BBR from REJ components, and is 
denoted PGAth. Figure 3.10 shows histograms of PGA for both groups (BBR and REJ) and the 
vertical red line shows the PGAth derived from the data. This threshold was identified iteratively 
by computing cumulative relative likelihoods from the BBR and REJ histograms for various trial 
values of PGAth.  Denoting the cumulative relative likelihoods under the BBR curve with PGA > 
PGAth as A and cumulative relative likelihood under the REJ curve with PGA < PGAth as R, a 
confidence index (Iconf) is computed as:  

 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐴𝐴+𝑅𝑅
2

  (3.1) 

The trial value of PGAth that maximizes Iconf was selected at the preferred threshold value, which 
is 0.005 g. The corresponding value of Iconf is 0.94, which indicates that only 6% of records are 
misclassified as either usable (BBR) or not usable (NBR) with this threshold. 
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Figure 3.10. Histograms of individual-component log(PGA) for the BBR and REJ data as identified in this 
study. The threshold occurs at 0.005 g, for which only 6% of records are misclassified.   

 

We separately evaluated PGAth using binary logistic regression.  Binary logistic regression is a 
method for developing a statistical model to estimate the probability of discrete binary outcomes 
of a process (e.g., will the outcome of a test be “pass” or “fail”?). In the present case, the data are 
the ground motions and the discrete binary outcomes are their assignment to BBR or REJ.  The 
logistic function is:  

 𝑝𝑝(𝑥𝑥) = 1
1+𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑥𝑥−𝜇𝜇) 𝑠𝑠⁄ )

  (3.2)  
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where p(x) is the probability of acceptance (BBR) for a record, x is the log10(PGA), and µ and s 
are the mean and standard deviation of a normal distribution estimated by the regression (i.e., µ is 
the value of x where p(x)=0.5 and s represents the distribution’s dispersion).  The calculations were 
performed using the logistic regression function in Python (linear_model.LogisticRegression). 
Figure 3.11 shows the outcome of the binary logistic regression. The x-axis is log(PGA) and the 
y-axis is p(x). The symbols at p(x) = 1.0 represent the BBR records (plotted at their respective 
PGAs) and the symbols at p(x) = 0 represent the REJ records. The green line is a plot of Eq. (3.2) 
and the threshold identified in the figure is 10µ = 0.011g (s = 0.29). If PGAth is taken as 10µ, this 
estimate of the threshold PGA is twice the previous value (Figure 3.10).  

We anticipated that the higher threshold identified from binary logistic regression could have been 
influenced by the aforementioned significant imbalance between the numbers of BBR and REJ 
motions (many more in REJ). To test the importance of this data balance, we created an artificial 
data set that matches the frequencies in Figure 3.11 but equally sampled from each distribution 
(100 data points each). For example, a bin with a frequency of 0.04 would have 0.04⨯100 = 4 
accelerations in the population at the bin-center PGA. Repeating the logistic regression for this 
data set produces the result in Figure 3.12, which provides a value of 10µ = 0.0053g, matching the 
result by maximizing Iconf. As a result, we consider the appropriate threshold to be PGAth = 0.005g.  

  

 

Figure 3.11. Data and binary logistic regression fit for acceptance (BBR) and rejection (REJ) of CSN data as 
function of log(PGA). The logistic fit produces parameters µ = -1.96 and s = 0.29.   
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Figure 3.12. Artificial data set created to match BBR and REJ histograms (Figure 3.9) but with even 
sampling, and binary logistic regression fit to that data. The logistic fit produces parameters µ  = -2.28 and 
s = 0.36.   

 

It is noteworthy that the preferred value of PGAth is nearly 20 times the noise level identified for 
the Phidgets sensors in Figure 2.3 of 0.00028 g (Clayton et al. 2020). There are several possible 
reasons for the differences. The effective noise levels of the sensors installed in the field are 
expected to be higher than what is reflected in Figure 2.3, which is a relatively quiet site with 
limited ambient vibrations. The vast majority of CSN sites are in the culturally noisy San Fernando, 
Los Angeles and San Gabriel basins; thus, noise levels at those sites will almost always be higher 
due to environmental conditions associated with the station location. PGAth is an average for the 
entire network and therefore incorporates the effects of noise in these environments.   

3.4.2 Threshold Between NBR and REJ 

The BBR to REJ threshold arguably has the greatest practical importance because it establishes a 
CSN-wide threshold to distinguish clearly non-usable records from the records of good quality. 
The NBR / REJ threshold can also be identified by applying the same procedures described in 
Section 3.4.1, and is of potential interest to distinguish records that have visible earthquake signals 
from those that are noise-dominated. Here we present the results of the Iconf threshold analysis and 
interpret the results.  
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Figure 3.13 shows histograms of PGA for all three groups (BBR, NBR, and REJ). The NBR 
histogram spans a wide range of PGA from 0.0006 to 0.05g (approximate 5-95% range), with 
significant overlap with BBR at the high PGA end and with REJ at the low PGA end. As in Section 
3.4.1, Iconf was computed using Eq. 3.1 for different values of PGAth and the threshold was 
identified as 0.0025g by minimizing Iconf. This threshold is shown in Figure 3.13 as a vertical 
yellow line and the minimized Iconf value is 0.73. This relatively low value of Iconf indicates a high 
rate (27%) of misclassifications (REJ records above the threshold and NBR records below it).   

The lower threshold for NBR / REJ (0.0025g) than for BBR / REJ (0.005g) is expected because a 
higher level of record quality is required for BBR than for NBR. Moreover, the relatively high rate 
of misclassifications with the NBR / REJ threshold is expected given the significant overlap of the 
two distributions. Interestingly, even this lower threshold still exceeds (by nearly a factor of 10) 
the Phidgets sensor noise level of 0.00028 g, which indicates that the Phidget noise level appears 
to have limited applicability to typical field conditions across the network.  

For forward applications, the BBR / REJ threshold is useful for preliminary identification of usable 
records, but it is not sufficient because, as shown in Figure 3.13, a significant number of records 
with PGA > 0.006 g could be NBR. Hence, only record processing (Section 3.1) can definitively 
confirm record reliability for ground motion prediction applications. The NBR / REJ threshold has 
limited practical application, but could be used to identify records that have visual characteristics 
of earthquake shaking, albeit with limited confidence.  
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Figure 3.13. Histograms of individual-component log(PGA) for the BBR, NBR and REJ data as identified in 
this study. BBR / REJ and NBR / REJ thresholds are shown; the first matches the prior result from Section 
3.4.1 and the second occurs at 0.0025 g.   
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3.4.3 Threshold Between Pre-Event Noise and Usable Records  

The REJ signals considered in threshold analyses in Sections 3.4.1-3.4.2 consist of both ambient 
noise and earthquake shaking. The relative contributions of the two sources are generally 
unknown. The thresholds identified previously therefore serve to distinguish between signals 
recorded during earthquakes (and thus containing energy from earthquake shaking) that do or do 
not contain clearly evident seismic features.  

An alternative objective for threshold identification is to distinguish ambient noise lacking a 
seismic signal from earthquake signals. This is the subject of this section, with the non-earthquake 
signal taken from pre-event noise windows from BBR and NBR signals, and the earthquake signal 
taken from the subsequent windows in those same records. The noise / seismic signal threshold is 
identified by applying the Iconf threshold analysis.  

Figure 3.14 shows histograms of PGA for the two groups. The top histogram contains component 
PGAs for earthquake signals (both BBR and NBR). The bottom histogram contains component 
PGAs for pre-event noise from BBR and NBR signals. The earthquake signals range from 0.00063 
to 0.06g (approximate 5-95% interval) and have some overlap at the low end of the distribution 
with pre-event noise PGAs, which range from 0.0004 to 0.006g. As in Section 3.4.1, Iconf was 
computed using Eq. 3.1 for different values of PGAth and the threshold was identified as 0.0013g 
by minimizing Iconf. This threshold is shown in Figure 3.13 as a vertical red line and the minimized 
Iconf value is 0.79.   
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Figure 3.14. Histograms of individual-component log(PGA) for the seismic signal (BBR and NBR) and pre-
event noise data as identified in this study. The threshold occurs at 0.0013 g, for which 21% of records 
are misclassified.    
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4 Data Comparisons 

4.1 CO-LOCATED SENSOR COMPARISONS  

An important step in the evaluation of the usability of ground motions recorded by CSN stations 
is to compare with ground motions recorded by non-CSN/traditional network sensors that have 
been used in previous studies (i.e., NGA projects). Such comparisons are most robust when sensors 
from both networks share the same location and both record a given event. Such co-located sensors 
were deliberately placed by CSN system operators (including the 6th author) to be verified against 
stations in the state-wide ground motion database (GMDB) (Buckreis et al. 2023a). These locations 
were identified by using the nearest neighbor tool in QGIS. This list was further refined by 
removing sites with sensors located in the upper floors of buildings. The resulting list included 
three sites with co-located CSN and non-CSN sensors. After searching through the event catalog, 
it was discovered that all three co-located station sites had ground motion recordings from at least 
two of the same events (the 2019 M6.48 Searles Valley and M7.06 Ridgecrest). In addition, two 
other earthquakes (2020 M4.17 Pacoima and M4.54 El Monte) provided ground motion records 
for two out of the three co-located station sites.  More details are provided in Table 4.1.  
 
Figure 4.1 shows the locations of the three sites where CSN sensors are co-located with non-CSN 
sensors. The non-CSN sensor at the site in the basin, 14403, has been a 200Hz Kinemetrics 
Episensor accelerometer since 2021. Prior to that it was a 200Hz Kinemetric FBA-11 
accelerometer. WNS, located in the Hollywood Hills, has 100Hz Kinemetrics Episensor ES-DH 
and ES-T accelerometers. PASC, located in the San Rafael Hills, has a 100Hz MBB-2 Velocity 
Transducer seismometer.  
 
Figures 4.2 - 4.4 compare the response spectra derived from the shared events recorded at the three 
co-located sites. Figure 4.2 shows slightly lower response spectra at the CSN sensor (T000337) 
compared to the non-CSN sensor (PASC) for the two large magnitude events recorded at long 
distance (2019 M6.48 Searles Valley and M7.06 Ridgecrest; rupture distances Rrup = 170.5 km 
and 177.1 km). This is more pronounced at shorter periods (approx. T < 0.15s) but the difference 
is still minimal. At longer periods (T > 0.5s) the differences are very small. Overall, there is good 
agreement between the data recorded by CSN and non-CSN sensors at this site, which are both 
housed in a vault located on bedrock in the San Rafael Hills.  
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Table 4.1. List of co-located CSN and non-CSN sensor sites and the recorded Earthquake Events with low-
pass and high-pass corner frequencies. A row is shown for an event and site if the CSN records are BBR or 
NBR and a non-CSN record is available.  
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T000337 PASC 

La Habra (2014) 5.17  BBR 0.002 0.152 0.003 0.186 0.446 11.526 0.042 41.664 

Searles valley 
(2019) 6.48 

 NBR 0.004 0.729 0.004 0.915 0.161 8.000 0.030 30.069 

Ridgecrest (2019) 7.06  BBR 0.006 1.502 0.007 1.889 0.111 10.643 0.027 38.575 

T000890 WNS 

Searles valley 
(2019) 6.48 

 NBR 0.004 0.644 0.007 1.548 0.149 6.982 0.032 29.178 

Ridgecrest (2019) 7.06  NBR 0.005 1.931 0.008 3.965 0.099 8.349 0.023 35.505 

Pacoima (2020) 4.17  NBR 0.025 0.648 0.024 0.808 2.646 12.500 0.085 38.171 

El Monte 2020 4.54 
 REJ 

N/A 

T001250  14403 

Searles valley 
(2019) 6.48 

 NBR 
0.011 

1.876 0.012 1.913 0.065 8.849 0.060 17.860 

Ridgecrest (2019) 7.06  BBR 0.015 4.848 0.016 5.196 0.072 10.049 0.050 22.124 

El Monte 2020 4.54  BBR 0.052 2.124 0.064 2.556 0.530 18.000 0.132 81.833 
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Figure 4.1. Map of co-located CSN and non-CSN stations. 

 

 
Figure 4.2. Comparison of the response spectra between PASC (non-CSN station) and T000337 (CSN 
station) 
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Figure 4.3 compares response spectra between a CSN sensor (T000890) and a non-CSN sensor 
(WNS) for the two large magnitude and long distance events as the prior pair, but also a smaller 
magnitude and near distance event (2020 M4.17 Pacoima). For the large magnitude events 
recorded at long distance (Rrup = 180.0 km and 186.5 km), the CSN sensor produces response 
spectra that are much lower than the CSN counterpart for all periods. However, for the smaller 
magnitude event recorded at a short distance (Rrup = 22.7 km), the CSN sensor produces larger Sa 
at short periods (T < 0.2 sec) and smaller Sa at longer periods up to 2.0 sec, where the spectra 
match. At this site, both the CSN and non-CSN sensors are located a few inches apart on a slab at 
the bottom of a three-story RC structure in the Hollywood Hills on a granitic formation (measured 
VS30 = 1043 m/s).  
 
 

 
Figure 4.3. Comparison of the response spectra between WNS (non-CSN station) and T000890 (CSN 
station) 
 
Figure 4.4 similarly compares response spectra for a close-distance, smaller magnitude event 
(2020 M4.54 El Monte earthquake, Rrup = 25.1 km) and the two larger, distant events. The spectral 
ordinates are very close for the larger events, but Sa from the CSN sensors are smaller for T < 
0.15s and similar at longer periods. This sensor pair, 14403 and T001250, are located in the middle 
of the Los Angeles basin (measured VS30 = 317 m/s) in distinct structures. Both structures are at 
ground level (no basements). The CSN instrument is a school building (approximate dimensions 
46 × 11 m) while the non-CSN instrument is in a separate building on the same campus (46 × 21 
m) (on the CESMD web site, this instrument is indicated as being in a shed next to the school 
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building, but it is actually in the school building; R. Guy, personal communication, 9/17/23). The 
two instruments are approximately 60 m apart. Given the different foundation dimensions, 
different levels of kinematic soil-structure interaction are expected from base-slab averaging 
(NIST 2012) that would suppress the high-frequency (short-T) ordinates for the sensor on the 
larger, building foundation. This is consistent with the smaller ground motion amplitudes at short 
periods for the CSN instrument.  
 
Overall, one of the three site pairs shows very similar results (Figure 4.2), another shows slightly 
different results at short period with the differences explainable based on kinematic soil-structure 
interaction principles (Figure 4.4), and the third has relatively large differences that may indicate 
a calibration problem for one or both sensors (Figure 4.3). Given the mixed results and the small 
number of site pairs, these analyses of co-located sensors are not conclusive. To more conclusively 
evaluate CSN station performance, larger separation distances must be considered, which is the 
subject of the next section.  
 

 
 
Figure 4.4. Comparison of the response spectra between 14403 (non-CSN station) and T001250 (CSN 
station) 

4.2 PROXIMATE SENSOR COMPARISONS 

The co-located sensor analysis in Section 4.1 involves a small number (three) of free-field station 
pairs. To broaden the comparison, in this section we consider “proximate” CSN and non-CSN 
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sensors, for which we consider stations that meet two criteria: (1) the stations are separated by ≤ 3 
km and (2) the stations have the same surface geology, based on the statewide map by Wills et al. 
(2015). Station pairs that meet these criteria are mapped in Figure 4.5 (arrows are drawn between 
paired stations).  

For each station pair, a differential ground motion IM is computed as:  

 𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) = 𝑙𝑙𝑙𝑙(𝐼𝐼𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐) − 𝑙𝑙𝑙𝑙(𝐼𝐼𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛)  (4.1) 

where the ‘csn’ subscript indicates the IM is from the CSN station and the ‘net’ subscript indicates 
the IM is from the non-CSN station. Both IMs are taken from individual as-recorded components 
of ground motion (generally north-south and east-west). The average value of 𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) is denoted  
𝜇𝜇𝛿𝛿. 

 

Figure 4.5. Map showing proximate CSN and non-CSN stations (160 pairs), defined by separation 
distances ≤ 3 km and matching surface geologies as provided by Wills et al. (2015)  
 

Figure 4.6 plots 𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) vs separation distance for cases in which the CSN records are BBR and 
the IM is PGA.  The mean difference in this case is 𝜇𝜇𝛿𝛿 = -0.017 with a standard error of the mean 
of 0.071.  These results show that the CSN PGAs are on average slightly smaller than the non-
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CSN PGAs, but that the differences are small and within the margin of error. Figure 4.7 shows the 
variation of 𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) with period for Sa over the period range of 0.01 to 10 sec. Data are only 
considered in the calculation of the binned means when both the CSN and non-CSN Sa values are 
within their usable ranges given the data filtering (i.e., the oscillator period T < 0.8/fcHP for both 
instruments). The results in Figure 4.7 show a negative bias (CSN lower) for periods near 1.0 sec 
(~0.6 < T < 2.0 sec) and for T > ~5 sec, but otherwise the two sets of IMs essentially match. The 
bias near 1.0 sec is about 10-15% (-0.1 to -0.15 ln units).  

 

 

Figure 4.6. Variation of differential PGA with station separation distance for BBR CSN recordings. The 
mean and standard deviation of the data are 𝜇𝜇𝛿𝛿 = -0.017± 0.071 
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Figure 4.7. Variation of mean differential Sa with period for BBR CSN recordings. 

 

Figure 4.8 plots 𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) vs separation distance for cases in which the CSN records are NBR and 
the IM is PGA.  The mean difference in this case is 𝜇𝜇𝛿𝛿 = -0.023 with a standard error of the mean 
of 0.056.  These results show that the CSN PGAs are on average smaller than the non-CSN PGAs, 
but as with BBR data, the differences are small enough that the bias can be considered to be 
statistically insignificant. Figure 4.9 shows the variation of 𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) with period for Sa over the 
period range of 0.01 to 10 sec. The results in Figure 4.9 show a negative bias (CSN lower) over 
multiple period intervals including 0.05-0.1 sec, 0.4-1.0 sec, and > 3 sec. Within these period 
intervals, the levels of bias are small (~ -0.1 ln units) but are repeatable and statistically significant.  
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Figure 4.8. Variation of differential PGA with station separation distance for NBR CSN recordings. The 
mean and standard deviation of the data are 𝜇𝜇𝛿𝛿 = -0.023± 0.056 
 

 

Figure 4.9. Variation of mean differential Sa with period for NBR CSN recordings. 
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4.3 SUMMARY OF FINDINGS 

The results presented in Sections 4.1-4.2 show that BBR CSN and non-CSN records are similar 
within the typical usable period range of PGA to ~5 sec, with the exception of low CSN ground 
motions near 1.0 sec. The CSN NBR records are also unbiased for PGA, but these records have 
lower ground motions than the non-CSN records over a range of periods, which is expected 
because by definition these records have a relatively limited frequency range and hence are missing 
significant portions of the seismic signal at low and high frequencies. As a result, we suggest that 
the criteria used to define BBR recordings be used to identify usable CSN data for ground motion 
applications.  
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5 Spatial and Temporal Noise Analysis 
Our review and processing of CSN data from the 29 earthquakes in Table 2.1 revealed that 53% 
of the downloaded records from CSN servers are REJ, meaning that the signals have the visual 
appearance of noise. As shown in Figure 3.9, 95% of the component PGAs for these records are 
between 0.0004 and 0.01 g, which exceed the nominal instrument noise level (Figure 2.3) of 
0.00028g. This comprises a wide range of apparent noise levels across the data set. The aim of the 
work presented in this chapter is to examine whether these different noise levels have systematic 
trends in space and time.  
 
Wilson et al. (2002) evaluated sources of seismic noise signals across different frequency bands, 
finding that low frequency noise (< 0.1 Hz) is dominated by thermal or atmosphere-driven local 
slab tilt effects, mid-frequency (0.1-0.3 Hz) noise levels are dominated by naturally occurring 
microseismic noise, and high-frequency (0.3-8 Hz) ambient vibrations are derived primarily from 
cultural sources.  Lecocq et al. (2020) identified trains, airplanes, and industrial processes as 
contributing sources of cultural noise, and documented their relationships to human activities, 
which decreased during the Covid-19 pandemic. Diaz et al. (2017) describe how impactful cultural 
events (e.g. rock concerts, fireworks or football games) intensify noise signals. Whereas few of 
these prior studies report noise data in acceleration units that can be compared to CSN data, 
Clayton et al (2020) report such information for CSN data recorded at a Los Angeles area school, 
which generally range from 0.0015 to 0.003 g. The lowest noise amplitudes occurred in evening 
hours and higher amplitudes occurred in mid-afternoon.  

5.1 AMPLITUDE METRICS FOR NOISE SIGNALS 

We consider both REJ records and the pre-event noise portions of BBRs and NBRs to evaluate 
attributes of noise signals. Amplitudes of noise signals are considered using PGA and an average 
amplitude of the Fourier Amplitude spectrum. Individual Fourier amplitudes are computed as 
follows:  
 
 𝑋𝑋(𝜔𝜔𝑛𝑛) = ∆𝑡𝑡

√𝑁𝑁∆𝑡𝑡
∑ 𝑥𝑥(𝑡𝑡𝑘𝑘)𝑒𝑒−𝑖𝑖𝜔𝜔𝑛𝑛𝑡𝑡𝑘𝑘𝑁𝑁
𝑘𝑘=1   (5.1) 

 
where x(tk) is the discretely sampled time series, N is the number of data points in the time series, 
∆t is the time step, n is an index for the discrete frequencies where Fourier coefficients are 
computed, ∆ω is the frequency step in rad/sec, and ωn = n∆ω = 2πn/(N∆t).  The mean noise 
amplitude 𝑋𝑋�𝑁𝑁𝑁𝑁is then computed as, 

 𝑋𝑋�𝑁𝑁𝑁𝑁 =
∑ 𝑋𝑋(𝜔𝜔𝑛𝑛)
𝑁𝑁𝑓𝑓
𝑓𝑓=1

𝑁𝑁𝑓𝑓−1
  (5.2) 
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where f is a frequency index that starts at 2 Hz = 4π rad /sec and Nf is the number of frequency 
steps to the maximum considered frequency of 20 Hz = 40 π rad / sec. The 2-20 Hz frequency 
range was selected because for most signals, the Fourier amplitudes of noise signals are relatively 
flat across that range (e.g., Figures 3.4 and 3.5). 

The subsections below will examine the characteristics of noise metrics when extracted from pre-
event noise (for BBR and NBR records) and the main signal (REJ records), and will examine how 
noise characteristics vary across the network for different times of day. 

5.2 COMPARISONS OF ALTERNATE NOISE SIGNALS 

Figure 5.1 shows the stations that recorded the 2019 Searles Valley earthquake, color-coded by 
the classification of the horizontal signals. There are appreciable numbers of stations with 
earthquake-like signals (BBR or NBR) and noise-like signals (REJ). Using the data for this 
earthquake, Figure 5.2 shows histograms of PGA and 𝑋𝑋�𝑁𝑁𝑁𝑁 for two groups of data: 

● Group 1: pre-event noise signals for BBR and NBR recordings 
● Group 2: REJ recordings 

The results show a wide range of amplitudes for BBR group 1 data (PGA ≈ 10-3.0 to 10-2.0 or 0.001 
to 0.01g) but a narrow range of higher amplitudes for group 2 data (PGA ≈ 10-2.2 to 10-1.4 or 0.006 
to 0.04g). The narrow range of amplitudes from REJ records reflects the approximate amplitudes 
of ground motions from this event within the distance range of the CSN sensors (161 to 193 km).  
This example suggests that the pre-event noise signals may represent preferred representations of 
noise from CSN signals.  

Figure 5.3 shows histograms for the group 1 and 2 data using both noise metrics, but now for the 
full data set of 29 earthquakes. These results show a wider range of amplitudes for BBR group 1 

data (PGA ≈ 10-3.5 to 10-1.7 or 0.00032 to 0.02g). The group 2 data ranges from PGA ≈ 10-3.4 to 
10- 1.1 or 0.0004 to 0.08g, which is similar to group 1 but with a stronger tail at high amplitudes. 
Regarding the two noise intensity metrics (PGA and 𝑋𝑋�𝑁𝑁𝑁𝑁), the latter has less dispersion, although 
the levels of skewness are similar.  
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Figure 5.1. CSN stations that provide data for the 2019 M 6.4 Searles Valley earthquake color coded by 
record category. Inset shows stations on the JPL campus 
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Figure 5.2. Noise amplitudes from CSN sensors for the 2019 M 6.4 Searles Valley earthquake as measured 
by pre-event noise from BBR and NBR signals (top) and REJ signals (bottom) and as represented by PGA 
(left; units log g) and averaged Fourier amplitude (right; units log g∙s0.5).  
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Figure 5.3. Noise amplitudes from CSN sensors for the 29 events in the database as measured by pre-
event noise from BBR and NBR signals (top) and REJ signals (bottom) and as represented by PGA (left; 
units log10 g) and averaged Fourier amplitude (right; units log10 g∙s0.5).  

5.3 TEMPORAL AND SPATIAL VARIATIONS OF NOISE 

The noise from CSN instruments measured from pre-event signals and REJ records may have 
several contributing factors. One factor is instrument noise, which should nominally match the 
Phidget noise level of 0.00028g (Figure 2.3). Another factor is ambient noise (i.e., microtremor 
ground vibrations) at the instrument locations. Ambient noise might be expected to have location- 
and temporal-dependencies. Stronger ambient vibrations might be expected in urban areas of high 
population density such as Hollywood, whereas relatively suburban or exurban areas (such as 
Pasadena or the JPL campus) may have lower ambient noise levels. Moreover, for any given 
location, noise may have temporal variations, being stronger during daytime than evening hours. 

Population density is considered as an index against which to compare noise levels. Figure 5.4 
shows a map of the portion of the greater Los Angeles region where the CSN sensors are 
concentrated. The map is shaded by population density (number of people per 100m2), which 
ranges from 0 to 2000 (data from Depsky et al. 2022), and is based on 2020 census data.  
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Figure 5.4. Population density from 2020 census within the portions of the Los Angeles area with the 
greatest concentration of CSN stations (Depsky et al., 2022).  

The pattern of noise level with population density can be visualized by plotting the dependency, 
which is provided in Figure 5.5 for PGA using the two signal types (pre-event and REJ) and in 
Figure 5.6 for the 𝑋𝑋�𝑁𝑁𝑁𝑁 noise metric. There is no significant trend in the PGA pre-event noise data 
for densities of 0 to 100 people/100m2, although a local high occurs near 50 people/100m2. The 
average noise level is 0.0016 g. These levels are lower than those reported in Section 3.4, but 
consistent with the findings of Clayton et al. (2020). For the REJ signals, the population density 
trend is flat from 0 to 20 people/100m2, but at a higher average level of 0.0045g that increases to 
0.006-0.007 g at higher densities, which is relatively consistent with the thresholds identified in 
Section 3.4 and notably higher than reported by Clayton et al. (2020). We have not yet identified 
individual areas having systematically high or low noise levels. These results show that the pre-
event noise signals produce lower average noise levels than do the REJ signals. Figure 5.6 shows 
similar patterns of the data with respect to population density for the two signal types.  
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Figure 5.5. Variation with population density of (a) pre-event noise and (b) REJ signals as quantified by 
PGA across all events. Distribution on the left side of the figure represents the full data set. Dark blue 
symbols are binned means and red line is the mean for the portion of the plot at low population densities 
where the trend is flat.  

 
 



50 
 

 
 

  

Figure 5.6. Variation with population density of (a) pre-event noise and (b) REJ signals as quantified by 
𝑋𝑋�𝑁𝑁𝑁𝑁 across all events. Distribution on the left side of the figure represents the full data set. Dark blue 
symbols are binned means and red line is the mean for the portion of the plot at low population densities 
where the trend is flat.  

Next we turn to temporal variations of noise metrics. Figure 5.7 shows a histogram of earthquake 
times for the 29 considered events (Table 2.1) using the local origin time for the event (Pacific 
daylight or standard time, depending on which was in effect on the event date). The results show 
that 17 events occur during time periods when human activity would be expected to be significant 
(roughly 9 am to 10 pm) and 8 events occur during relatively quiet time periods (roughly 12 pm 
to 6 am).  
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Figure 5.7. Histogram of event time by time of day using military time (0 = midnight, 12 = noon). During 
evening hours (0 to 6 hr) there are 8 events. During peak daytime hours (9 to 22 hr) there are 17 events.  

Figure 5.8 and 5.9 show the time variations of noise levels using the PGA and 𝑋𝑋�𝑁𝑁𝑁𝑁 noise metrics, 
respectively, for all events. These results show that events with the highest noise levels tend to 
occur in evening hours, although this is not repeated across all events at that time of day. Overall, 
the trend of the data with time is inconclusive.   
 
Based on the results in Figures 5.6-5.7 and 5.8-5.9, population density has more consistent and 
repeatable impact on noise levels than does event time of day. Relatively quiet conditions occur 
where population densities are low (< 20 people/100m2). These results suggest that refinement of 
the noise thresholds identified in Section 3.4 could be made based on location.  
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Figure 5.8. Variation with time of day of (a) pre-event noise and (b) REJ signals as quantified by PGA across 
all events. Red symbols are event means. Time zone is Pacific (0 = midnight, 12 = noon) 

 



53 
 

 
 

 

Figure 5.9. Variation with time of day of (a) pre-event noise and (b) REJ signals as quantified by 𝑋𝑋�𝑁𝑁𝑁𝑁 across 
all events. Red symbols are event means. Time zone is Pacific (0 = midnight, 12 = noon) 
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6 Usable Distance Ranges for CSN Data 
 
A typical step in ground motion model (GMM) development is to apply data screening criteria, 
which are used to identify the data that will be considered in model development. One aspect of 
data screening is to minimize the effects of sampling errors from low-amplitude ground motions.  
 
In the case of triggered instruments, sampling errors occur when the ground shaking level at a site 
falls below the trigger threshold. In the case of continuously recording instruments, which is the 
case for CSN stations, sampling errors occur when signal amplitudes are not stronger than the 
instrument noise threshold. This is typically the case at large distances, and is more pronounced 
for small magnitude events than large magnitude events. For a magnitude-distance condition where 
the mean ground motion amplitude is near the threshold, unusually strong motions that exceed 
trigger thresholds or that fall above the noise floor are recorded. However, weaker motions that do 
not exceed trigger thresholds or that fall near the noise floor are not available. Accordingly, the 
problem is not that no records are obtained for such conditions, but that the recorded ground 
motions become biased as a population towards larger values. 
 
To overcome this problem, data selection criteria are applied during GMM development so as to 
screen out data that is potentially subject to sampling bias. In effect, for a given sensor network, 
these criteria provide the maximum source-to-site distance (Rmax) that can be used with confidence. 
In the NGA-West2 project (Bozorgnia et al. 2014), conservative criteria were used consisting of 
magnitude-Rmax relations that depended on instrument type (analogue; older, low-resolution 
digital; modern, high-resolution digital), as shown in Figure 6.1. These relations were established 
primarily on the basis of conjugate expert judgment (among model developers). 
 
Here we establish a predictive model for Rmax for CSN data. This is done by establishing the 
distance for which few (< 5%) of ground motions from a given event would be expected to fall 
below a threshold that is applicable to the network. Ground motion recordings with distances 
smaller than Rmax could be used with confidence in GMM development because essentially the full 
statistical distribution of ground motions would be sampled within the data set.   
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Figure 6.1. Variation of limiting distance (referred to as Rmax in this report) with magnitude for different 
instrument types as used in NGA-West2 project. From Boore et al. (2014). 

To estimate Rmax, we plot in Figure 6.2-6.4 the distance variation of the 5th percentile PGA (mean 
minus two within-event standard deviations) for five magnitudes (M 4, 5, 6, 7, 8) and two site 
conditions (VS30 = 300 and 760 m/s). The Rmax value is the distance at which the PGA curve 
intersects the threshold PGA. Three thresholds are considered: (1) 0.005g, which is based on the 
threshold analyses presented in Section 3.4.1 (Figure 6.2); (2) 0.003g, which is loosely based on 
the average PGA for low populate density areas described in Section 5.2 (Figure 6.3); and (3) 
0.0015g, which is based on the noise / seismic signal threshold analysis in Section 3.4.3 (Figure 
6.4). Additional refinements of the limiting distances are possible if the event term for an 
earthquake is known (used to adjust the GMM prediction across all distances and site conditions 
up or down) or if a more refined noise threshold for a given subregion or event time can be 
determined.  

In past work, Rmax was estimated using truncated regression of data from a specific region (e.g., 
Contreras et al. 2022). The truncated regression was performed to develop a regional GMM that 
was used to develop intensity measure - distance curves like those shown in Figures 6.2(a)-6.4(a). 
Truncated regression of regional data was not needed in this case because the Boore et al. (2014) 
path model has been demonstrated to perform well for southern California data from arrays with 
sensitive instruments for which truncation issues are not at issue across the distance range 
considered (Nweke et al. 2022; Buckreis et al. 2023b). Accordingly, the Boore et al. (2014) model 
is used without modification to produce the distance attenuation curves shown in Figures 6.2(a)-
6.4(a). The resulting values of Rmax are plotted in Figure 6.2(b)-6.4(b).  
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Figure 6.2. (a) Rmax evaluation for events of magnitude 4 to 8 and VS30 = 300 and 760 m/s; the Rmax value 
corresponds to the intersection of the noise threshold (0.005g) with the mean minus two within-event 
standard deviation PGAs. (b) Variations of Rmax with magnitude for the two VS30 values (including a fit 
relationship), with prior recommendations from NGA-West2 shown for comparison.   

 
Figure 6.3. (a) Rmax evaluation for events of magnitude 4 to 8 and VS30 = 300 and 760 m/s; the Rmax value 
corresponds to the intersection of the noise threshold (0.003g) with the mean minus two within-event 
standard deviation PGAs. (b) Variations of Rmax with magnitude for the two VS30 values (including a fit 
relationship), with prior recommendations from NGA-West2 shown for comparison.  
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Figure 6.4. (a) Rmax evaluation for events of magnitude 4 to 8 and VS30 = 300 and 760 m/s; the Rmax value 
corresponds to the intersection of the noise threshold (0.0015 g) with the mean minus two within-event 
standard deviation PGAs. (b) Variations of Rmax with magnitude for the two VS30 values (including a fit 
relationship), with prior recommendations from NGA-West2 shown for comparison.  
 
 
As shown in Figures 6.2(b)-6.4(b), the resulting CSN Rmax values are smaller than the 
recommendations from Boore et al. (2014) for modern digital instruments and are similar to the 
prior recommendations for analog and older digital events (for M > 5 events). This is expected 
given the relatively large noise levels associated with CSN sensors (Figure 2.3).   
 
Fits to the Rmax - M data are provided using the following expression,  
 

 ln(𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚) = �
𝑐𝑐1𝐌𝐌 + 𝑐𝑐2

𝑐𝑐3𝐌𝐌 + 𝑐𝑐2 + 𝑀𝑀ℎ(𝑐𝑐1 − 𝑐𝑐3)     𝐌𝐌 ≤ 𝑀𝑀ℎ
𝐌𝐌 > 𝑀𝑀ℎ

  (6.1) 

 
Where Mh = 5.5 and c1, c2 and c3 are coefficients estimated using least-squares regression, and 
whose values are provided in Table 6.1. Coefficients are provided in Table 6.1 for the VS30 = 300 
m/s and 760 m/s site conditions considered above, and also 400 m/s, which is the median condition 
across the CSN station network. The fits for the VS30 = 300 m/s and 760 m/s site conditions are 
shown in Figures 6.2b - 6.4b.  
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Table 6.1. Coefficients for limiting distance relationship in Eqn. (6.1). 

Noise Threshold 
(g) 

VS30 (m/s) c1 c2 c3 

0.0015 300 1.3762 ± 0.0044 -2.3002 ± 0.0216 0.2819 ± 0.0024 

400 1.4210 ± 0.0042 -2.6128 ± 0.0206 0.2887 ± 0.0023 

760 1.5223 ± 0.0036 -3.3297 ± 0.0177 0.3066 ± 0.0020 

0.0030 300 1.5584 ± 0.0034 -3.5889 ± 0.0166 0.3138 ± 0.0019 

400 1.6062 ± 0.0030 -3.9305 ± 0.0148 0.3229 ± 0.0017 

760 1.7156 ± 0.0024 -4.7240 ± 0.0121 0.3478 ± 0.0014 

0.0050 300 1.7018 ± 0.0025 -4.6233 ± 0.0124 0.3439 ± 0.0014 

400 1.7536 ± 0.0022 -5.000 ± 0.0111 0.3570 ± 0.0012 

760 1.8939 ± 0.0026 -5.9905 ± 0.0128 0.3852 ± 0.0014 

 
 
Figure 6.5 shows the variation of PGA with distance for five earthquakes (2014 La Habra and 
Westwood, 2019 Searles Valley and Ridgecrest, 2020 El Monte) along with the predictions of the 
Boore et al. (2014) GMM (median ± two standard deviations). CSN data shown on the plot are 
BBR motions only. Recordings from all other networks for these events from the GMDB are 
plotted in the background with gray symbols. The three threshold PGA levels defined earlier in 
this report are shown with horizontal lines. Figure 6.5 shows that the data generally lie above the 
thresholds. The GMM mean -2 standard deviations curve intersects the thresholds at a distance 
beyond the maximum distance of BBR stations for the lowest threshold but would cause the data 
to be screened out for the upper two thresholds. This suggests that the 0.005 and 0.003g threshold 
may be too restrictive and that the 0.0015g threshold may be preferred.  
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Figure 6.5. PGA versus distance data points for five earthquakes from Table 2.1 with substantial numbers 
of BBR CSN motions, overlain on data points for motions from other sensor networks and attenuation 
plots from the Boore et al. (2014) GMM using VS30 = 400 m/s (network median site condition). Horizontal 
lines indicate alternate PGA thresholds as defined in this report. 
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7 Summary and Conclusions 
 
This study has undertaken a series of tasks that collectively aim to provide insight into the 
performance of CSN ground-level sensors during southern California earthquakes, provide 
processed data in an accessible form for users, and provide recommendations on the range of 
conditions for which the data can be used with confidence in ground motion modeling projects.  
 
CSN data from 29 earthquakes has been uniformly processed using NGA-type procedures. For 
events where data from other networks was already available, the CSN data has been added to a 
national database for ground motion research applications (Buckreis et al. 2023a) to supplement 
the previously available data. For events not previously in the database, CSN and non-CSN data 
has been processed and added to the database. Relevant site and event metadata has been compiled 
and added so that this data is available for public use.  
 
Among the events considered, approximately 50% of the recordings were judged to be not usable 
because they are noise-dominated based on visual inspection or have unusual features. These are 
referred to as REJ records in this report. However, this rate is potentially misleading as an indicator 
of network performance, because 27 of the 29 events are small magnitude (< 5.5) and often 
occurred at considerable distances from the network. Two large events (2019 Searles Valley and 
2019 Ridgecrest) were successfully recorded by over 95% of sensor horizontal components, 
despite being located at distances > 150 km. This rate of data recovery is considered more 
representative of the performance that can be expected in future impactful earthquakes in the 
greater Los Angeles area.  
 
Among the remaining (non-REJ) recordings, we distinguished records with relatively broad 
bandwidth (usable Fourier frequency range of at least 0.5 - 10 Hz) (denoted BBR) from those with 
relatively limited bandwidth (narrower than that for BBR at one or both ends of the frequency 
range; denoted NBR). Comparisons of BBR and NBR signals with signals from non-CSN 
proximate sensors (separation distance < 3 km and same geology) shows that PGA levels are not 
statistically distinguishable. Spectral accelerations from BBR CSN data appear to be unbiased over 
the oscillator period range of 0.01 to 5 sec based on these comparisons with the exception of lower 
CSN motions near 1.0 sec, whereas NBR CSN data have lower spectral accelerations for multiple 
period intervals < 5 sec (amount of the bias is generally < 10-15%).  This is not surprising given 
the limited bandwidth of NBR signals.  
 
Comparisons of BBR and REJ data indicate that 0.005g is a reasonable average threshold 
acceleration across the network, whereas comparisons of pre-event noise signals with usable 
signals (BBR and NBR) indicates a threshold of 0.0013g. These thresholds represent averages over 
broad areas and multiple times; we could anticipate that specific locations and times could produce 



61 
 

higher or lower thresholds. Using these threshold accelerations with a calibrated GMM for 
southern California, limiting distances have been provided as a function of magnitude and site 
condition. For locations beyond these limiting distances, the problem is not that no recordings are 
available, but that the overall population of recorded ground motions are biased towards larger 
values. The limiting distances derived for CSN are notably lower than those for more sensitive 
instruments as used in prior research, but consistent with those for analog or low-resolution digital 
sensors.  
 
These results show that CSN data is useful for research and engineering applications, but its range 
of applicability is more limited than data from more sensitive instruments. Within its application 
range, the CSN data have advantageous features, including relatively small between-sensor 
spacings that facilitate site response or ground motion variability studies at short length scales.  
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